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ABSTRACT

The following is a summary of research activities for the
period October 1, 1975 to September 30, 1980, related to grant
AF-AFOSR-76-2943, The primary purpose of the research was the study
of forced, thermoelastic motion of plates due to Laser irradiation.
This summary describes the theoretical and experimental phases of the

research project,
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1.0 Introduction

One of the primary missions of the U.S. Air Force is to provide
leadership in weapon system development, and to be cognizant of any and
all advances in pure and applied scientific knowledge which has a bearing
on changes in the state of the art. Current developments centering on
Laser technology have advanced to a stage where Lasers must be considered
as potential weapons. A high power Laser has the ability to concentrate
a short duration, high energy flux in a very narrow beam, Thus it has the
ability to deposit focused radiant energy upon opaque solids or struc-
tural components. Unlike other, conventional weapons, it is not dependent
upon a ballistic path, but it is inherently a line of sight weapon. Because
radiation travels with the speed of light (approximately 3x10!® cm/sec) such
a weapon can inflict almost instantaneous damage to any target upon which
it is trained. These characteristics obviate the need for a ballistic
computer as well as complex lead aiming devices, and the time between
target acquisition and radiation impact is negligible.

The present study was concerned with the interaction of a laser beam
with the skin of an aircraft, a re-entry vehicle, or a satellite, i.e.,
a thin plate or shell., Laser interaction with plates or shells, in general
is a complex phenomenon. For purposes of experimentation and associated
analysis, it is possible to define three types of interaction resulting
in (more or less) separated effects:

(a) Sudden deposition of thermal energy, without a change in phase.
This causes sudden thermal stresses in the irradiated plate. Because of the
rapidity of the energy deposition process, there will be thermally generated

stress waves.,




(b) Surface vaporization of a very thin layer of material, plasma
production, plasma heating, shockwave formation in plasmas, etc. This
mode of interaction results in suddenly applied surface pressures of con-
siderable magnitude to the solid plate, inducing time-~dependent stress waves
and deformations.

(¢) Complete local vaporization of the material, and the resulting
creation of openings (holes or large surface cavities).

It is to be noted that conditions (a), (b), and (c¢) usually coexist,
but they can be (nearly) separated by proper choice of laser and target
parameters.

Laser technology and laser weapons development is an on-going activity
in the U.S.A. and in other countries. By virtue of its mission, the U.S.
Air Force must keep abreast of such developments, and must be prepared to
evaluate accurately the potential and destructive capabilities of such
weapons when and if they become operational. In addition, detailed know-
ledge of the capabilities of such a weapon system will undoubtedly suggest
ways and means to either avoid, circumvent, or reduce its destructive

effects upon potential targets.
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2.0 Summary of Research Accomplishments

2.1 Theoretical

Detailed and comprehensive theoretical studies were performed to
model the motion of a rectangular plate when subjected to laser irradiation
(see references 2 and 4). In these studies, we utilized the Bechtel model
for Laser heating.

The first part of our study deals with the thickness-stretch motion
of a transversely constrained, irradiated slab. This part of the study
models the initial response of the plate. The initial motion of the plate
is predominantly thickness-stretch in the vicinity of the irradiated area.
In this area, stresses and displacements are primarily in the direction of
plate thickness. However, these stresses and displacements are relatively
small compared to the stresses and displacements resulting from the
gross (predominantly flexural) motion of the plate. It is shown that in
the vicinity of the Laser beam, a dilatational wave is set up which moves
in the direction of the plate thickness, This wave causes periodic tension
and compression stresses on the median surface of the plate (see Fig. 1).

The second part of this study is concerned with the gross-motion of
the rectangular plate which is assumed to be simply supported along its
boundaries. The plate surface is irradiated by a Laser beam at an arbi-
trary point., Three different theories are used to model the time-
dependent, thermoelastic motion of the plate:

(a) Three-dimensional elasticity theory (Ref. 2)
(b) Classical Plate Theory (Ref. 4)
(c¢) Improved Plate Theory (including the effects of shear deformation and

rotatory inertia). (Ref. 4)
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In each case, an exact solution (in series form) was found for the
boundary value problem. A comparison of the three solutions reveals
essentially equivalent results for the gross motion (deflection, bending
moment, etc.)., In this connection, see Fig. 2. This implies that future
calculations for practical plate (or shell) structures subject to Laser
irradiation can be carried out within the framework of relatively simple
mathematical models, resulting in a considerable reduction of the computa-
tional effort., Fig. 2 shows the time history of the center deflection of
an irradiated plate. The three curves correspond to the three different
theories employed for the computation.

In references 1 and 3 we consider the boundary value problem of the
clamped circular plate subject to normal Laser irradiation at the center of
the plate. An exact solution for the dynamic response of the plate was
found in series form. This model includes the effects of flexure, shear,
transverse, rotatory and radial inertia forces, etc. The results of this

study served as the theoretical base for experiments described below,

2.2 Experimental

Thin aluminum and steel plates in the shape of a circle (radius
% 11,5 cm) were subjected to laser irradiation in the laboratory. The
plate was clamped at the boundary with the aid of a heavy, machined ring
fixture. The laser beam was directed to intercept the plate at the center,
normal to the plate surface. The Laser used was a Holobeam model 630-QNd
glass system, This Laser produces an output power (in the Q switched mode)

of approximately 3 joules, with a pulse width of approximately 40x10~9 sec.
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The output beam is about 1 cm in diameter with a beam divergence of 2 m
radians, at an output wave length of 1,06 u. The beam deposits radiant
energy onto the metal plate, resulting in heating. Time dependent thermo-
elastic stresses are relieved by the motion of the plate.

The motion of the plate is sensed by a Bruel and Kjaer model MMOO4
capacitive transducer and associated circuitry. The amplified signal
is displayed on a Tektronix 545B oscilloscope and photographed. The
detector was mounted at a separation of 1 mm from the rear surface (away
from the laser), at the center of the plate.

The results of experiments (plate center displacement vs. time) are
shown in Fig. 3. The theoretical curve is also shown in Fig. 3, and it
can be concluded that the mathematical model predicts the motion with
reasonable accuracy.

In addition to the above experimental work, exploratory work was
performed to move the plate by impulsive means. Lasers were used to
vaporize a very thin layer of the plate metal surface material. This
produces a plasma which is heated (by the Laser), and subsequently pro-
duces a shock wave, The shock wave impinges upon the plate surface and

causes the plate to move impulsively. A mathematical model for this

type of pressure loading has been considered (see reference 7).
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PART |
1. INTROMMUICTION

Tt is well hnown that fuler-Bernoulii beam theory and its two-
dimensional counterpart, classical plate theory, neplect the
effects of rotatory inertia and transverse shear detformations.  As
a4 consequence of this omission, results obtained by these classi-
cal (approximate) theories are valid only tor the case of waves
which are long compared to the radius of gyration of the heam
cross-section or the plate thickness, Onp the other hand, classi-
cal clasticity theory, while still limited to sutficientlty small
deformations, imposcs no restriction upon the wave leneth ratio,

but solutions for beam gnd plate dvnamics problems within the frae -

worh of the cxact theory require o mommental computational eftfort,

it osuch selutions can he obtained at all.

In the case of beams, corrvection terms have heen supplied
by Ravleigh [1] and Timosherho [0 Ravicigh introduced the
eftect of rotatory anertia and Timoshenko included also the effect
of transverse shear deformation. Thus, thix ene-dimensional theory
well hnown as Timoshenko beam theory occupres a position intermediate
hetween Luler-Bernoulli beam theory and clasticity theory and

N3THCTI00 N 00T A- 050, 2070 SM Archives, 2 (1981t 213-277
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is expected to give satisfactory results for short waves.

In the case of plates, equations of motion analopous to
Timoshenho's beam equations have been given by Mindlin [4] and
Uflvand 5], and a corresponding theory of plate equilibrium has
been piven by Henchy o] and Reissner [7)

Since these improved theories and celomentary theorijes
are characterized by differing dispersion relations, we can expect

that certain wave reflection and transmission problems associated

with piccewise non-homogencous plates and beams will result in major

differences in the predictions of the t.» theories.

The present investigation is divided into two parts:

(1) Transmission and reflection of waves in piccewise
non-homogeneous beams. In this case we consider wave
motion in two bonded, semi-infinite beams composed of
different materials, and also the case of a beam of
finite length bonded at ecach end to two semi-infinite
beams composed of a different material.

(2) Transmission and reflection of waves in piccewise non-
homogencous plates the construction of which are
similar to part (1), except that we consider wave motion

in plates instcad of beams.

2. BASIC EQUATION OF BEAMS
2.1 Desceription of the Motion
We shall assume the following displacement components for a beam:

Ux =z ¢(x,t)
U =0 (1.1
U_ = w(x,t) .

The strain-displacement rvelationship can be written

as follows:

e &
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XX Ix 1'
p
va =0 1
i
e . =0
(1.2) 4
¢ = l« (¢ + aﬁ 1
Xz 2 ax
¢ = 0
yx
§ =0 1

2.2 oergs Jonstderattons and fiamilton's Prineiple ]
In the theory of small motions of an elastic isotropic continuum, 1
the kinetic and potential energics of deformation are *
=Lt a2 s 02)ax da »]
2 '0°A X v z |
1 .0 . . <
N p(z? ¢? +« W¥)dx dA . (1.3)
R
VY = l fg’f (1 ¢ + T e + T © r
2 70 XX XX yvoyy Iz
3
hd 7 2
AT et 'Ixycxy + —T),:C).:]dx dA (r 9
14 L3 3w)
T2 ‘[)J:\ [Txx“ ax * Txz o a3x dx dA

where a dot indicates partial differentiation with respect to
time. Define the moment of inertia, the arca of the scction, the
bending moment and shearing force as

= IA :? dA

—
i

A= J'A dA
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M=/ 1 z dA

A XX (1.6)
Q= fA Txz da .
Then equations (1.3) and (1.4) reduce to
T=%fo2 DU $2 + A wP)dx (1.7)
V=%IOQ[M%£+Q ¢+%)]dx ) (1.8)
The variation of T and v are
6T=J:)£p(15u<5r3\+/\v.16|:') dx (1.9)
ov = f"[M 2 (5¢) + Q{M v 2 (éw)}] ax . (1.10)
o 9x 9x

Denote the work done by surface tractions when the displacements are
varied by 8W. Then

x=L
oW = SYmee + qwidx + [M*EE + Q¥8w] {(1.11)
0 X=0
v
where f 5 2
" J_z [rz2ly &
2 2
v
LA
4= |y [Tl 9y
2 2
M* = . 1 z JdA at x=0 or ¢
A Xxx
= & x=0 .
Q* fA L dA it x=0 or ¢

Hamilton's principle in an interval of time t; to t; is
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31
S (8T - 8V + SW)dt = 0 (1.1
t2
After substitution of cquations (1.9), (1.10) and (1.11) into (1.12)
and upon application of integration by parts, we are led to the

following equation

ty / . \
S s [(-DAW + g% + Q)W + (-pTo + %g - Qm)6¢] dx dt

t, o <
t, x=1 (1.13)
A TR T (Q*-Q)Gh‘] dt =0
tl Jx=0

2.3 Equations of the Motion

From cquation (1.13), the equations of motion can be written as
follows:
. 3Q
~0AW + —5 =
pA aw 4 {

(1.14)

-pid + %% - Q+m = 0

The appropriate boundary conditions are:

1) At cach end of the beam, x=0 and x=f£, one member
of cach of the pairs, (M,¢) and (Q,w) must be
specified.

2) At the surface of the beam, z = + %, one member
of cach of the pairs (m,¢) and (q,w) must be
specified.

To insure a unique solution the following initial

conditions are reguired:
wix,0), $(x,0), w(x,0) and $(x,0) are specified.

The general look's law reduces for the present isotropic

case to

NP -
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26 e . =1
X

Upon substitution of cquations (1.2)

P )
= F oz et +
Txx ax \('yy Taz

. dw )
N
xz ! (f T X

—
1

into (1.15},

we obtain

(1.1}

Further substitution of equations (1.16) into (1.0), and using

Timoshenko's correction factor », the beam stress displacement

relations become

" - . v
Q=x"AG (? X )

v.Soz(r + 1 . )dA

where

is ignored.

(1.17)

The displacement ecquations of motion are now olbtained by

substitution of (1.17) into (1.14), with the result

3 (

w2 A 2 . ¢)> +q = PAK

Ax \ 9x

: 32 S 3w . .
El a*x-(g - K AG(@}‘*&?)*U\—OIQ

Fquations (1.18) are the well known Timoshenko Beam equations.

(1.18)
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2.4 Feergs Flux

With reference to equations (1.17), the sum of kinetic and poten-

tial cnergies for a beam of length x1 - x2 is

2 2
X . . -
T+ V=17 ‘[U(I¢2+ Aw?) + EI (g-f + k:‘z,k(l<¢' + i?,-:—)]dx.

X1

After differentiation of (1.19) with respect to time and upon appli-

cation of integration by parts, we obtain

? Xef g . o f e A
3¢ (W) = [w("’“" - g%) * °("I° ) %\: * Q)]dx :
(

17T 1.20)
+ [Mo + Qw]x2
When there are no applied loads, q = m = 0, and the integrand of the

right hand side is identically czero. Thus the equation reduces to

3 . . X2

B ey = o ( ) 2

ap (T4V) = (M6 Q\n]x1 (1.21)
We identify the energy flux as

J(x.t) = - [Mp + Ow] . (1.2

Upon substitution of cquations (1.17) into (1.22) we obtain

J(x,t) = - [El %i"— b+ KZAG<%¥ * ¢>&] . (1.23)

2.5 Reduction from Timoshenko Bewn Theory to Huler-Bermowlli
Beam Theory
ow . . -
If we let ¢ = - % in the equation (1.13), we arc led to the
following equation

PO




to Kf.2 2
r datM Y Sﬁx am .
;o {SiT + 4 - pAlv + pl IXT Y oAy v dx dt
t, 0
t: T x=Q
+ { [ - (M*-M) X + (Q*—Q\Gw]xzo dt (1.24)
1
t2 e x=0¢
-7 {(pl 32 .M Q + m) Swj dt = 0 .
X JIX
t: X=C

Thus the equation of motion can be written as follows

M .. %W om
g - AW > — =0
A§7’+ q pAWw + pl 7 + X €

7.

. . W 3 R

If we delete the rotatory inertia pl %~% and also 5% we obtain
A o

(%

M .
\,’I +q = Q:\\\'

Q

Since the third term of the equation (1.24) vanishes because of the
second equation of (1.14), the appropriate boundary conditions are
as follows.

At cach cnd of the beam x=0 and x=¢, one of cach of the
products (M, %%) and (Q,w) must be specified.

And also from the second cquation of (1.14), we obtain

T
Q=g+ m

If we delete ol %% and m, we obtain

M
ex

Q=

The energy flux equation in this case reduces to

J(x,t) = - [-M g—: . Qu]
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Fhe displacement equations of motion and moment and shear force are

obtained as follows:

%W .
-E1 INC + g = PAW
3w
M= - B o R
M El N7 (1.26)

3.  WAVE PROPAGATION IN PIECEWISE NON-HOMOGENEQUS BEAMS

L1 General Solution

w

[quations (1.18) with q = m = 0 reduce to

x2AG é%»(\g{ + @) = pAW {

(1.27

. 9° o 3w o ]
EI E§ -r\M;Cﬁ-+¢>—pl¢ .

Assume <
w(x,t) = A em(t - E’ ]
. X N
o(x,t) = p Bt - Q) (1.28)

where @ is wave frequency and C is phase velocity. Upon substitutio
of equations (1.28) into (1.27) we obtain a pair of homogencous,
lincar algebraic ecquations in A and D whose determinant, set equal

to zero, yields the velocity equation

(1-a) C* - (Ce? » Cs?)y ¢+ cs2 Cez =0 (1.29
where R s
2 _ B 2oL K a2 MG 1A
(,o =7 (‘S 5 a = Iﬁ I i ('S . {
-
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From equation (1.9, we obtain the mode velocities as follows:

i

- ol (: -
Fl-at (S]

R (1.50)
S odtl-ancT O
¢oox

is therctfore

. X
.t + 27')
B o k

N X
1..{t + G l}
R o A

where it is understood that the frequencies must be the same for
all waves and that Cr will become imaginary as a > 1. A plot ot
phase velocity vs. frequency is shown in Figure 1.1, Nore that of
the 8 coefficients appearing in equation (1.31), only {1 are in-
dependent.  After substitution of equations (1.31) into (1.27) we

tfind that

Ak = Pkﬂki , h=1,2
(1.3
Bk = - rkRki y k=12
where Ck“i
AR
ML -G

In Luler-Bernoulli Beam Theory, equation (1.26) with

q=0 reduces to
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The most general solution of 1058 0 sva 0oy

\ N \
- 0t ) 1 t - -
\‘:‘:‘{\kk k "\kk k } )
n=1
where A
¥ ) ;
‘ (1.
)

" 1
Q-
N
(Li\) o=y

Since C; 1s alwavs imaginary, A: must be cqual to Zero to insure

7 o=-
2

a bounded solution for x -+ -+ . A plot of phase velocity vs,

tfrequency is shown in Figure 1.1,

2

(3l
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3.2 CMerion Tn Twe Bonded Semi-Inginite Rearms o se ! N

o B ", N Y LA
erent Muiterials

Two semi-infinite beams of different materials are bonded at x=0,
as shown in Figure 1.2, Tor a disturbance coming from the nepative
x direction, let wr and ¢; be the incoming waves, w;  and &7  he
the reflected waves, and let w; and Q; be the transmitted waves.

We have

. 2 e - &)
wylx,t} = 1 Akl ¢ k1 1
k=1
. > i - &)
$lx,t) = ¢ nkl ¢ k1
k=1
> . < x < ()
) 2 Gt + 7
Wilx,t) = ¥ B e k1
k=1
) 2 It + )
$x0) = I R e i)
k=1
. X
. 2 it - c )
wy(x,t}) = § Aa e K2
k=1 -
y 0D<x <
. 2 iRt - )
o2(x.t) = T Dy, k2
k=1 - (1.30)
where
Akj = , Bk] pijkj s
k=1,2
ij = ] i= 1,2 '
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where the subscript § = 1,2 refers to the respective domain
of the beam (see Figure 1.2), and the subscript K = 1,2 refers to the

mode of motion.

_— - — - x
$£i0 By I, A £y Exs Is A
X=0
Filaae 1.0 - Twe ponded, Semi-IniTnite Foams
At the junction x=0, the tfollowing four boundary con-
ditions must be satisfied
wi(0,t) = wo (0,1)
$1(0,t) = ¢210,1)
Qi(0,t) = Q;(0,1)
My (0,t) = M2(0,t) (1.37)
where ) awj
= O e o , = 1,2
Q) * \J ] ( ax “j 1
39 .
Moo= BT, =L i= 1,2
i joi
and where
+ -
VT bt
+ -
b, = 1 +
+
Wz = W2
+

Upon substitution of the equations (1.306) into (1.37}, we obtain

a set of simultancous, lincar, algebraic cquations (in matrix form):




1 1 -1 -1 RnT -y -y
T+by; 1+bsy -y ({1+hoy) -y{l+hoo) R.1 Silaebygiyy =elebop il
Critir Cogbey Cpobie Cazbzo byo Crpbybyp: o Ulgbo gl
i 1 1 1 1 1
- - P - - [asn . - D PR :
Cia Cz1 Cr2 Coz o Cii L [ X
L - = e ~ -
1las
where
B, G L ‘
o R N E .'\:'. = p
Yy = oo TS , S E =N .
i G 2 - 7, ¢, . S
! i ki Nj < ki !

Once Dy, Dyy, and

pertics are known,

oof the incoming waves and the material pro-

the quantities Ryy, Ry, Dy, und D0 ouare ob-

tained by the application of Cramer's Rule.  When a -1, Doy omost

be equal to zero to insure a bounded solution for v -- .

The enerpy flux of the incoming wave, reflected wave,

and transmitted wave is defined by equation (1,231, except that oenly

real parts of (1.30) drec used:

JT = - [(ReMIT(ReE]) + (Re]1(RoW )|
JT = - [(ReM])(Red]) + (ReQii(ReR]V] (1.3
+

)3

- [(ReM3) (RedE) + (ReQi) (ReW! )]

The transmission and reflection coefficients are theretfore obtained

in the following manner:

Jr0.0)
Tt
+
MRS O
J0,
RoE oo
5
Jyo, )
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where the bar denotes the time average over a complete period.
From the point of view of conservation of cnergy, the sum
- of the transmission and reflection coeftficients must be cqual to
one, i.e. T + R 1. Calculated vilues of transmission coeftficient
vso dimensionless fregoeney are plotted in Figores 1.5 through 1.6,
[n the Fuler-Bernoulli Beam Theory, the displacement

cquations become

ot - (.x ]
Gl 11
w1 e ' RO
. BT e - S
w, = Byjo R I -1 (1.1
e - (:\, ) it - L\ ) IS
w, + Apse e + AL
where Il NS
.2 o . .
L= . 4 R S -, =1,2,
(l_l (.‘ 21 13 A
At the junction, x=0, the Loundary conditions
wi(0,t) = wo (0,1)
W (0, t) Iw, (0,
s el IR 142
Ix X ( '
M0, t) = Mp(0,1)
Q0,t) = Q0,1
where azwi
M. = -t =, = 1,2
i 3°x !
3w,
Q. = -1 - i=1,2 i
J 32y

vield the following set of simultancous, linear. algebraic

cquations (in matrix form):




-:\1 1

I\ll
-An
A
(1.43)
where ™ .
n [12 [R5
d ={ = , == = —
(\Y\) YR N
Solving the equations (1.43),
Biravai-d?)-i(1-vd?)
A (I+yd?)Z+2vd (1+d7)
A (1.44)
e - 2(1+yd? ) (1+d)
A d{(l*YdY)?*:Yd(l*d )}

Upon substitution of equations (1.44) into (1.41) and application

of equation (1.25), we obtain

—_— .
J,00,t) = [A,!? Elll‘gr“
! Ci
T o o - 2 ¢ Q 5
J1(0,t) = |Byy|? EyT, (1.45)
-3
11

+ . ]
J3(0,t) = Az ]? Ly, Qa—
Ci2

The transmission and reflection coefficients are calculated to be

e
;2200 )2 (ea) 2y

J100,6)  {(1+¥d?)2+2vd(1+d2) )2

—_— (1.30}
R - Jy(0,t) . 4Y2d2 (1-d2) 2 (1-yd?) "

JT0,t)  {(1+YdH) 2+ 2yd (1+42) 2

The conservation of cnergy check is satisfied:

i nd iaeaster

"
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Ter = 2D () yd + 22 (1-d2)2 + (1-yd?)* | )
{(1+vd®)? + 2yd(1+d%)}? (1.47)

Numerical values of the transmission cocfficient 1or the Fuler-
Bernoulli Beam Theory are shown in Figures 1.3 through 1.6 for

comparison purposes.
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3.3 W TEInlte Lengtn Bonded at B

COReria Covmosed oF RO
RO Gorpoded o @ [ rerent

A beam of infinite length is bonded at cach end to two semi-infinite
beams composed of a different material as shown in Figure 1.7,

The displacement equations in this case are:

+ . i“‘<t - (
wila,t) = T A e
NP
. 2 ii:(t - e )
it = 8o e N
K=1
S L < X s )
R 2 i‘_:(t + (.—"——)
WX, t) = T B e gy ]

-—
[T
e

_ 2 i::(t + er
Splx,t) = N R e k1

.
w3(xnt] =

>
—

Ca X o

RN
N . X
- \AL(I’ e )
WXLt s N A, e N2
A=l M-
| 2 iy (t - \) 1
+ (
: N I . |
K=1 - . 0ix<t i
S . ( X )
) N it e
W (x,t) = £ B, e K2
! kel K2 ,
] N ) (t s )
P06 = ¥ Ry, e K2
k=1 )

+
\b}(x\t‘ =

morrte MM ta
=
~

=

(1.8




e ®
Plv xl' I, 4 PZ' 32. I, ‘/ ’11 El' I, A
X=0 b oY
Fioure 1.7 - beam of Finite Length Fowlded teo Twe Semd-Intinit.

Beuams Corposed of a Different Material

The relations among the 20 coefficients in equations (1.48) are
defined in a manner similar to that of equations (1.36). Note
that €3 = Ciy, C23 = €21y, p13 = pr1, p23 = p21, and bz = by,

b23 = bz for this specific case.

At the junction points, x = 0 and x = £, the following

boundary conditions must be satisfied:

w1 (0,t) = w2 (0,1)
¢1(0,t) = ¢2(0,t)
Q(0,t) = Q2(0,t)
M {0,t) = M2 [0,1)
wWa (L,1) = w3(R,t)
d2(L,t) = d3(L,1)
Q(&,t) = Q(L,t)

My (2,t) = Ma(2,t) (1.49)
where
IWj
- wla . oM . y -
Qj K I\j(j 3t ¢)j , j 1,3
2] .
Mj = l.jlj Iy R i =1,2,3
and where
W= W) oe W) 62 = 07 + 03
o1 = b7 « 03 Wy = w5

+ - +
Wy = Wy 4+ W2 $3 = &3
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Upon substitution of equations (1.48) into (1.49), we obtain a sct

of simultancous, linear, algebraic equations as follows:

- ~aF A 1
| [ ! ot 1 ] [ 1 K (’j oy | i
O L N N A B A R A ! ! : NI
L L A LT VO B S ! Pt
1 ! i |
R T S AR e | ro
N " S oM
T A
| A R k’\ I RE ISP B B Y & i !
N S N S ' ‘ ‘
1 : ! 1 oo
[ [ R I ool [ | o !
L e b I l.“ W s L |

¥ (l.5m
where, for example

[[1+hH] ] [n“
er]

- > ) = 5 - A
E (I*Pkl)lkl} ] % { (]*hkl)]klj
h=1
and s
B k2 Gr o Gs -(“I‘fu y
YRR TG TG e ke
aQ
b, . = ~~ p , k=1,2 o= 1,2.3
ki ij kJ

The quantities Ryy, Ryp, Dyz, Deoy Ryoy Repy Dpg. and Daaoare
obtained by the application of Cramer's Rule.
The transmission and reflection coefticients in this case

are defined as:




—_—
RPN &

T: —==
¥

Jyo,t)

Jyon)

Rf e e o
R
Joo,ty

+ . - . - . R
where Jo(x,t) i3 defined in a manner similar to equations (1.39).
Two numericual results are shown in Figures 1.8 and 1.9,

In Euler-Bernoulli Beam Theory, the displacement equa-

tions are, in this case

. X
. Lt - e
W= A e 11 ) —we X< ()
. X . X
1t o+ (~~) ot o+ (:~)
Wl = Bye 4B, 21
. Lt - ) Lot -
w. o= \j.e + Ao
' 1€ aot . URENN
X . A
(it + (7’7] ot - ¢ i
w. = Bj,e LR S ‘
X- ¥ At
e o) Lt - )
* Crs Uoa S
Wy = Apge + Argc . DEESED SENIES
(1.3
where
4= A N S P
1] 21 -
The corresponding boundary conditions are

Wi(0,t) = W, (0,t)

AWy (0, t) AW, (0, 1)

TR T ax

Mp(0,t) = Ma(0,1)
Q0,1 = a0, 1)

insile it aititttensiattutitiiabiiti oot ottt




WolE,t) = W, (e, t)

Rl

[ C dwy (0,

RE AN
Moo, tr o= Mo,
Qoo tl = Qe t) 11.53%)
where

Moo= - B \ e 1,2.5

i i
Q. = - k.1 . Po=1,2,3

i i

and we obta

cquations

i I i
-
1 -1
1 i
\ QO
0 Q
] [\
0 \}
L
where
Y
n

in the tollowing simultanceus, lincar, algebraic

in matrin form):

9 A -
-1 -1 -1 -1 0 0 Byl |-A1y
d -id -d id 0 0 By Ay
—rd? wd” S W o o A -
yd? ivd? ad o d? 0 0 Ax: A1y
o 271 e € -1 -1 Bia o
d{_l - 1de 1 —de ! ide -1 i B-: \l
ng(-l -Yd?t_l YJP{] -\d3: -1 I Ars a
Ydau-l iydai-l -3d3f' —iyd3d -1 - Az [\l
(1.51)
k2 k> ’ (oY Cs (n 1
won o Ym0
02 le (;F 2
= - = o ) vz © -
i "3

The transmission and reflection coefticients in this case

are defined

tn a manner similar to equation (1,151, Two numerical




results are also shown in Figures 1.8 and 1.9 for comparison purposcs.
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3.0 CONCLUSTON AND DISCUSSTON 01 RESULTS (PART D

In the case of tuler-Bernoulli Beam Theory the mediva 13 dispersive,
two modes of propagation are possible, the first mode response is
always a travelling sinusoid, and while the scecond mode response

is always an attenuated standing wave. A study of Timoshenko

Beam Theory also indicates the existence of two modes, the charact-

eristics of which differ tfrom that of foregoing modes. In res-

ponse to harmonic excitation, the first mode response (lower phase
velocity) will alwavs be a travelling sinusoid, while the second
mode response (higher phase velocity!l will be in the form of a
travelling sinusoid if a< 1 thigh frequenciest or an attenuated
standing wave 1t a > 1 (low frequencies). Tt can be shown that the
mean energy tlux vanishes in the case of a standing wave.  The

corresponding phase velocities are shown in Figure 1.1.

The incoming wave is assumed to be sinusoidal. With reference to
Figures 1.3 through 1.6, we note that Fimoshenko Beam Theory trans-
mission coefficients T near zero frequency approach those of Fuler-
Bernoulli Beam Theory. In the low frequency range we have ap > 1,

a; > 1, and therefore transmitted and reflected waves have (travelling)
sinusoidal and (standing) attenuated components. In the high fre-
quency range we have ap; <1, a; <1, and in this case all wuave compon-
ents are sinusoidal. Large discrepancies between the two theories
occur in two trequency bands, one of which separates the high from
the low frequency region, and the other of which is the high fre-
quency region.  In the case depicted in Figures 1.3 and 1.6, that
region is characterized by ay <1 and a: > 1, i.c., reflected waves are

sinusoidal, but transmitted waves are sinusoidal and attenuated




{(standing!, resulting in a provounced lowerim: ¢ the transmission
coetticient.  In the cases exemplitied by Piaures 104 and 1.5, thut
3 revion is characterioed by ayp 1 and a, <1, and in this case the
transmitted swaves are sinusoidal while the reflected waves are
sinusoidal and attenuated.  In the high rrequency region trans-
sission voettficients approach a constant valae which i3 lower

than those of tuler-Bernoulli Beam [heory as the frequencies
approach infinity. 1t is also interesting to note (with reference
to Figures 1.5 through 1.60 thut in the region which ix interediate
between the low and high frequency region the specific variations
of the transmission coefficients with frequencies are strongly
dependent on the direction of travel of the incoming wave. This is

not the case tor the huler-Bernoulli Ream Theory where the trans-

cocttivient is independent of frequency as well as of the

direction of travel of the incoming wave.

[n this case we huve both sinsuoidal and attenuated waves in all
regions of the beum for the low frequency revion tag > by wr

and only sinusoidal waves in all regions of the beam tfor the hiteh
frequency region (ay <1, az <11, Vor the particalar exanples de-

picted in Pigures LS and 1.9, the transition redion occnrs when

there are sinusoidal waves in domain @ vay <1 and sinmsondal oang
attenuated waves in domain @ fa; " 1) in Figure o200 In tho Tow
frequency region there is good to fair agreciment between the two
theories, while 1o the high fregquency region there appears o
difference between the twoe theorics.,  In the case of Timoshenho

Beam Theory, the numbers of maxima (and minimar of T oper unit
frequency approach g censtant value as the froguencies in-
crease, while in the case of taler-RBernoulli Beam Theory, they
decrease as the frequencires increase.  These ditferences are due
to the difference in mode propertics and plaise velocitieos hetaeen

the two theorices,




NOMENCEATURE - PART L

o IR
A area ot the cross-scction ot the heam
i AT L
& phase velocity
| d tn/ya
t Youny's modulus
o‘\_\, components of strain tensor
[ shearing modulus
. . i
h thichness of the beam = v > \
{ moment of inertia of the bheam
i Vol
J energy flux
i domain of the hean
N mode ot the motion
. ltenpth of the beam
M bending moment
mn applicd surface force
i G2/
Q.qQ’ shearing torce
4 applied surtface force
R reflection coetficient
¥ /1) = Ga/6y
I KNinetic energy
T transmission coefficient




230 He
t time

U‘,UV,U displacement components in the direction of
o X,¥,2z respectively

v potential energy

v width of the beam

X,¥,2 rectangular coordinates

v Poisson's ratio

o] density

Tex components of stress tensor
2 frequency
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PART 11
5. BASIC EQUATIONS OF PLATES
5.1 Description of the Motiom

We shall assume the following displacement cemponents for a plate:

Ug = 24, (x,y,1)
Uy =z wy(x,,v,t)
U, = w {x,v,t) . (2.1)

The strain-displacement relationship can be written as

follows:

A S
XX 0x “9x
vy 8y T3y
Ju
z_
€z 3z -0
o (2%, Wy 1(3_‘“53_[
xy 2\ 3y 3x T2 T\ 3y ax
U ouU .
1 7y z 1 aw
o s 1) (e R

1o -
to
tw
=

o L(a_u_zai* . (W
zx 2\ 9x 2 - X ¥ ) (

5.2 Energy Consideration and Humiltom's Prineiple

In the theory of small motions of an clastic isotropic continuum,

the kinctic and potential cnergies of deformation are




22
h 4
(- { - ( { l, {07+« pdx dy de:
In 14 - Nyl
s . (9]
h
= ( 2 (‘l[‘ l\ \:{: LA+ )+ \f}d.\ dy dz
I 1)
, 0 v
a (i . .. .,
A 2 p{:—‘; DL hw}dx dyv dz .
Jm }0 - - Xy .
[ ISR B

where a dot indicates differentiation with respect to time, and

the stress resultants are defined as follows:

¢ h
M= 2 q do
X XX

h

hi

h

Moo= J.’. 1 zdz
\ vy

«ll




t h
M = 2
v i N Tods
’ ~h AV
h
r:2
Q\ = - Jd
E {h o
t h
{ N P
)\‘ ) - Jdo .51
: \
h
The variations of T and Voare
oy 3
R L AP R RE I BV RGLY : o
i i 12 'x X ! .
Q-
i Jy IE¢, 3
SO { {\\ A S VR <— 2.
b N NN Xy iy
8] 4]

Jan Biwoo . S, -
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Hamilton's principle in an interval of time
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After substitution of cquations (2.6, (

into (2.9) and upon application of integration by parts, we are

led to the following cquation
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5.3 Equatione of the Motion

From equation (2.10}, the cquations of motion can be written as

follows:
oM M
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ph” Yoa XY =
ST Yy * Jy ax Q)’ * sv 0
. 9Q aQ,
- phw + 521 + ng £ P =0 (2.11)

The appropriate boundary conditions are

1) At x=0, x=1, onc member of cach of the pairs (M‘.u().

(Mxy,wy), and (Qx,w) must be specified.

2) At y=0, v=a, one member of cach of the pairs (Mvvﬁv).

Mxy,wx). and (Qy,W) must be specified.
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To insure a unique solution, the tfollowing initial con-

ditions are reguired:

v ) o (x v SO Wik v
v 06,00, by, 0), u),(x,),( by o XLV, 0), WX, Y, 0)

and w(x,y,0) are specified.

The general Hooke's law reduces for the present isotropic

three dimensional case to
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Upon substitution of cquations (2.12') into (2.5) we obtain
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Since the sccond terms of equations (2.14) are negligible in

comparison with the first terms, we obtain
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and upon substitution of

h
Moo= 26

h
Q\ = b J_‘h_

Further substitution of

{ze, vvze ) ods R (2150

cquation of (2.13) into [2.5) we obtain

¢ dr R (2. 15M)

cquitions (2.2) into (2.15a) and (2.15h)

and using Mindlin's correction factor » (1), the stress resultants

and displacement relations become
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The displacement equations of motion arc now obtained
by substitution of (2.16) into (2.11), with the result:

azw\,
DY+
ax

The sum of kinetic and potential energies for a plate of length
X2 - Xy and width v, - vy, with reference to equations (2,30 and

(2.4), is

After ditferentiation of (2,181 with respect to time and upon

application of integration by parts, we obtain
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When there are no applied loads, S\ =5 = [ = 0, the first integrand
of the right hand side is identically zero.  When the edees vo= vy
and v = v of the plate ave simply supported, the third integrand
is identically zero. Thus the cquation reduces to
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and we identity the encrgy flux as
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5.5 Eolectlon tod ar. Tieoer
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in equation (2.10), we are led to the following equation
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Thus, the cquation of motion can be
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Since the fourth and fitth terns vanish becuuse of the cauations

(2.0 0, the appropriate houndary conditions are as tollows:

(10 At &= 0, x5 ., one tenber of cach ot the pairs

M
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nust he specitied,

(20 At v o= 0, v = g, one member of ecach of the pairs

(v

nust he speciticed.

{3) At any two points of four corners (0,04, 0,7}

and (a,0 1, one member of the pair (.\1‘\”\‘) must he specitied.

The energy flux equation in this case reduces to
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The displacement equations of motion and the stress

4 resultants are obtained as tollows:
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6. WAVE PROPAGATION IN PIECEWISE NON-HOMOGENEOUS PLATES

6.1 Joner:! Solution

Equations (2.17) with S‘ = Sv = P = 0 reduce to
ay 2y 3 2.

D A_.i,{ + i’:"\—, + D 1-v ’ ’V“ + _a__w.-\', -
ax” XAy 2 3)’2 Axdy

2 w . N " 3 =
- (nh(a—y' + l,ly) = i—j (l"v . (2.30)




Since we consider the infinite plate simply supported at the edges,

vio= 0 oand v o7 oa, we assume
X
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A
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where i is wave freyuency, and € is phase velocity.  Upon sub-
stitution of cquation (2.31) into (2.30+, we obtain three homogen-
cous linecar algebraic equations in A, B, and R, whose determinant,

set equal to zero, vields the velocity cquation;
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From cquations (2,33)

velocity as follows:
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The most general solution of {2.30)
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where it is understood that the frequencies must be the same tor
all waves and that ¢ can become imaginary. A plot of phase velo-

city vs. frequency is shown in Figure 2.1,
Note that of the 18 coefficients appearing in ecquation
(2.36), only 6 are independent. After substitution of cquations
(2.36) into (2.30), we find that
+ + - -
= =~ A
Bk 1t Ak i , BI\ P A
RU = q A i T (2.37)
k k "k ’ k kK ' -
where .
('k nn N ]
c—- e ¢ = Y o = - P
[ U ’ k=12, P T, o
2
Ck {’k
= - == e ————— k= 1,2, =0
4y Q g2 7 43
kY KX

mdeethinetRiRN Sty




(= | | ELENMENTARY TMEORY
3 n -
,‘,|= MPROVED Vntolv&(-}) o
2 _— {Oft)-0.2
& 2

A FIRST MODE
L3 SECOND MODE
< THIRD WODE

¥y =03
i - T
Noe
\\ —‘_—'
-~ o
— -
e’

DIMENSIONLESS PNASE VELOCITY ~

7 X
A
//
A
o T U T T T T T e —T m— T
[ 20 40 (X 60 100 120 140 180 180

1
DIMENSIONLESS FREQUENCY /o n(#‘i_)/bﬂ

Figure 2.1 - Phasc Velowity vs. Frequency

In elementary theory, we have
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Note that we can also obtain phase velocities as h+0 in the cqui-

tion (2.32) of improved theory.




6.2 Wave Motion in Two Bonded Semi-Ingfinite Platea composcd
of Different Materiais

Two semi-infinite plates of different materials are bonded at

x=0, as shown in Figure 2.2. For waves coming from the negative

. . + + + R R - -
X dntutmn, let Y1 wyl’ and W be thc:mmlung v..nis., Verr 1.)'1
and Wy be the reflected waves, and let Yoo ¥ and w, be the
transmitted waves, we have .
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where
BY. = p. . AL \ BD. = - p . Al
Kj kj k) Kj ki ki
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R ™ O A ! ' Ry A M
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and where the suhscript j = 1,2 refers to the respective domain of
the plate (see Figure 2.2). The first subscript k = 1,2,3 refers
to the mode of motion and the second subscript refers to the domain

of the plate.
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At the junction, x=0, the following six boundary con-
ditions must be satisfied:

= ! ,
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Upon substitution of equations (2.39) into (2.40}, we obhtain a set

of simultaneous, linear, algebraic, cquations (in matrix form):
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Once A:l, A;l, Agl and § of the incoming waves and the
material properties are known, the quantities Ayy, Az, Agp, Ala,
A;z and A;g are obtained by the application of Cramer's Rule. When
Cy1, €21 or Cyy arc imaginary, AT‘, AZ; or A;, must be cqual to
zero, respectively, to insure a bounded solution for X » -w.

The energy flux of the incoming wave, reflected wave,
and transmitted wave is defined by equation (2.214, except that
only real parts of (2.39) are used:
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... transmission and reflection coefficients are therefore

obtained in the following manner:

ry
Jl(U,t)

J 0,t)
R:’,-.+2‘_—
Jl(o,t]

where the bar denotes the time average over a complete period.
From the point of view of conservation of energy, the

sum of the transmission and reflection coefficients must be canal

to one, i.e., T + R = 1. Calculated values of transmission co-

efficients vs. dimensionless frequency
1 2
o ¥ hat ( a)
i A e ,
0, nm

are plotted in Figures 2.3 through 2.6.

In elementary theory, the displacement cquations become
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At the junction, x = 0, the boundary conditions




Wy (0,v,t) = we (O,v,t)

W, (0,v, 1)

REN N

MO0,y = N S
M0y 1oy, )

M ) M
NV xv2 -
o =10 R (2.45)
[Q“l* dy ] x=0 [(\'\"‘4> dy ] - ’ ' 1

vield the following simultancous, linear algebraic equations
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The energy flux of the incoming wave, reflected wave,

and transmitted wave is defined by couation (2.27) except that only
real parts of (2.44) are used:
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The transmission and retlection coetfficients are

Numerical values

+
JLo,t)

of the transmission coetfticients tor the elementary

theory are shown in Figures 2.3 through 2.6 for comparison purposes.
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A plate of finite length is bonded at cach end to two semi-infinite

plates composed of a different material as shown in Figure 2.7
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(2.48)

The relations among the 45 coefficients in equations (2.48) are
defined in a manner similar to those of equation (2.39). Note
that Cpso= Cppv Pg = Ppr Gz = O s = T fis = fip @nd
85 = g1 s k = 1,2,3, for this special case.

At the junction points x = 0, and x = &, the following

boundary conditions must be satisfied:

b (Oy,t) = b, (0,y,1)
wyl(O,y,t) = wyz(O,y,t)
w (0,y,t} = w2 (0,y,t)
M (0y,t} = M, (0,y,t)
Mxyl(O,y,t) = MxyZ(O’y’t)
Q,,(0,y,t) = Qy2(0sy,t)
b, &y,t) = v,z(Ly,t)
wyz(l,y.t) = wy3(2.y,t)
w, (L,y,t) = wy(R,v,t)
sz(l,y.t) = Ms(&y,1)
Mxyz(l,y,t) = Mxy3(z,y,t)
Q) = Q3 {2ty t) (2.49)

where

PP
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] - + + -
a7 Y Yyl
N N -
v wyl - wyl N wyl
} + -
Wi = Wy ot Y
+ -
wa - wa * wx:

W, = W
wa b wa
w.\'S i} w;S

wy = W

ax dy b= s
A LI
M . =D, 1,\) D I )=1,2,3
xyj o2 ay 3x
]
- 2 . 1= 3
ij = K (’jh(ax + wxj) , J=1,23

Upon substitution of

set of simultaneous,

equations (2.48) into (2.49), we obtain a

linear, algebraic equations

R B ﬁ,l_
[ R U B AU A
[ I SV B T An (R
L EUE N UV A NS
T e (NTNY
R T B B N [IENLNY
[N o oy oo
AR N R L [T
R NN B N s [
[ R TN B U Al f )
N I AN B SN [ il !
b I
bl .' .=, “.\b (LI ; L"'J !_’ ! IJ

(2.5M
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JON .
where tor j = 1,23
F I,
mo= =
Il k?
[
N L -1 . &
ij L a h=t,2 Psj Co. nn
3
¢ e
ki LY N )
‘lkj = 5 25 . L=1,2 v3j - 0
N
i
i nr
Yy = v \ h=1,2,5
ki (kj a ki
ni L o~z
‘k; =t rk} pk) f h=1,2,3
le : Ck} ahj s ' A=l 208
Si = , SL = ¢ . k=1,2,53

c . - - - + + - ~ +
The quantitices Ayy, Ay, Agy, AI?, Aos, Nao. ALy Ao Aoy Ay,

+ + . . . .o
Azs, and A3y arce obtained by the application of Cramer's rule.
The transmission and reflection coefticients in this case

are detfined as

—_—

Jle,t)

Tz e
7
J0.0)

Jl(n,t)
Rz ---me-mm- s

+
Jie )

+ . .. . . . .
where Ja(x'f) is defined in oa manner similar to cquation (2,191,

Numerical results are shown in Figures 2.8 and .49,




In elementary theory, the displacement

this case, are

5
. 2
wi{x,v,t) = IR
k=1
2
wI(x,,\',t) = X R
k=1
2
w,(x,y,t) = %R
k=1
2
wo (x,¥,t) = LR
k=1l
2
+
wi(x,y,t) = IR
k=1
where
c2. = @

L1
W (2

it

X
- )
Ck1 sin

Ck17 sin

Ck27 sin

Ck2 gy M

X~
Ck3

The corresponding houndary conditions are

wil0,y,t)

;!Ml((),,\'.t)

3x

i)

wy (v, T)

"““2 ((‘,}',t)

Tox

M (D0, t)

o,
[QxZ M

ey ST

sin —

cquations, in

v
,  ~wax<(

N
( Rl

v
y O<x<f

v
v s f<xcm

()

)
k2]



X

N

F
B

W, (9, »Y,t)

Iwy {2,y,t)

ax

and we obtain the following

cquations:

(-1 ]
1
L]
(‘“
[ oyl
[ 0!
(o1
(o]
(ol
[ o1

[0 10 1 10 o
1 1
[ V- 0
2 G | !
o, 1 lme, 11 0y
fmng, ) L=y, b 0]
A A NN
1 - 1 o+ 1
e W e el
[mokzs;(] [mpk‘zS; 11 - o5
Cany oSl l-nmy (SEL Ty o )

= w(l,y,t)

dwsy (L,y,t)
= e —

= stiﬂ,,v,t)

aMx\'"a
= [QXS * '73}:- ] X

simultaneous,

£

linear, algebraic

Ri11
Rz 1
+
Ri12
+
R22
Rz
Rz2

+
Ri3

+
R11
1 +
-~ Ry
Ci

+
CriRia

+
M1k

-
(2.50)

Numerical valucs of transmission coefficients vesulting from the

h)

¢lementary theory are also shown in Figures 2.8 and 2.9 for

comparison purposes.
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7. CONCLUSIONS AND DISCUSSION OF RESULTS (PART 11)

adhadin,

\\
<
7.1 domogcneows Plates of Unboundod Lenjth
. [n the casce of elementary plate theory there will be a traveling
}

wave as well as an attenuated standing wave. In response to harmonia

excitation, there will be a single traveling sinusoid if

n nn A
0 0 -y (B
o e 2 ¥ ( 3 ) : ]

where Qlf is the cut-oft frequency. For the case 0< ° /illf there
are no traveling waves and both "waves" will be standing and
4
attenuated. 4
A study of improved plate theory indicates the existence
of three different cut-oft frequencies 0+ ’_Tl(,’ﬁ;(fﬂ,(., where
“1c’ s MJC satisfy the tfunctions
] ni - 1
£ (5 ) = = h=1,2,3
’l\( I\(,) a ’ ( )
4
which we can obtain from cquation (2.31). 1In the frequency 3

range 0 <9 <q there are no traveling waves, and we have three

1C
standing, attenuated waves.  When “,‘“."L.“ L:;(‘ there exists a single
traveling wiave and two standing attenuated waves.  For Lot L S

we have two traveling waves and a single stunding attenuated wave.
When &:,(,(82 the three resulting waves are of the traveling variety,
Plots of the phase velocity for traveling waves are shown in
Fipure 2.1, A dimensionless plot of the three cut-oft frequencies
vs. plate thickness is shown in Figure 2,10, The cut-off fre-

quencies ;l,(. and Q;(‘ hecome unbounded as h » 0. However,

o ‘/ D (n"7 !
S . )
¢ ph a

as h > 0. These will corvespond to the case of classical plate
I

theory. R
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IMPROVED THEORY

A FIRST MODE
8 SECOND MODRE
c THIRD MODE

80

60

40 4
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Rioure D010 - =01 P cuenes co Shloiness

m,

Two Ronded, Semi~Infinite Plates compoacd of
Materials

~J
to

The incoming waves are assumed to be sinusoidul. With reference
to Figures 2.3 through 2.6 and to Figure 2.10, we note that trans-
mission coefficients T of improved platce theory approach those of
clementary plate theory as the thickness of the plate approaches

zero.  We also note that the two theories are in agreement when

2
. I /nm

O I —

- sll(? ’ 'ph ( a )

In the high frequency range sz,(. <&, T for improved theory approaches

a constant value which is lower than the T for clementary theory,

et b

ey




RS He Refomar, ol 0 T

In the case of improved theory, the transmission co-

cfficients for each of the three modes approach the same constant

e mm i ek ket

value for sufficiently high frequencies, and this value is inde-
pendent of the plate thickness.

An incoming wave is not possible for <0< In the

1¢°

frequency range QIC << QSC both theories predict a single, travel-

ing wave, and the transmission coefficients T as calculated for

both theories are in good agreement. Differences for T as calculated 3

by the two theories becomes appreciable for QSC <

7.3 Pla‘te of Finite Length Bonded to Twe Semi-InTinite Flates
Compoged of a Different Material

e

N

With reference to Figures 2.8 and 2.9, we note that there is good

to fair agrecment between the two theories in the low frequency

range Q1(1<Q<QSC‘ In the high frequency range there can be con-
siderable differences between two theories.

The numbers of maxima (and minimal of T per unit fre-
quency region in improved theory approaches a constant value as
the frequencies increase, while in elementary theory they decrease
as the frequencies increase. This phenomenon is a consequence of

the difference in dispersion relations of the two theories
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NOMENCLATURE - PART 11

ity Tosopint ion
width of a plate
phase velocity
flexural rigidity of plate (D=Eh3/12(1-v7})
Young's Modulus
cxponential function

o




¢
Xy

m

Xa¥s2

components of strain tensor
modulus of clasticity in shear (G=E/2(1+0))

thickness of a plate

v o1

cnergy flux of a plate

domain ot a plate

mode of motion

length of a finite plate strip

bending and twisting moments of a plate

intensities of bending and twisting moment at boundary
ratio of Young's Modulus (m = E-/F))

intensity of applied surface load

shearing forces of a plate

intensities of shearing force at boundary

reflection coefficient

intensities of applied shearing force on surtace
Kinctic energy

transmission coefficient

time

displacements in x,y and z direction

potential cnergy

virtual work

warping displacement of plate median surface

cartesian coordinates

Mindlin's correction factor




Poisson's ratio
density
component s of stress tensor

rotation angles of line originully normal to median
surface

frequency

the hth mode cut-oft frequency




:
i o |
‘ /;7:5'5’- jlv-£ Sl
N Reprint from
j SM Archives
110 7@
Noordhoff International Publishing ecapoved £0F "“blwue"
Leyden, The Netherlands :?f;r“utionun




SMOArchives, Volo 0, tssae 2, May 1977 Y]

Neordhoft International Fublishing - \lpren aun den koo
rronted an the Netherlands

PYNAMICS OF INTTEALLY STRESSED HYPERELASTIC SOLIDS

Herbert Reismann
Faculty of tngincering and A\pplied Scicences
State University of New York at Buftalo
Ruftfalo, New York

Peter Pawiik
lepartment of Jechnology and Business Studies
State University College 4t Buffalo
Buttalo, New York

P, INTRODUCTION

the twe principal obicctives of the present report are: (1) to
logically develop a linecar theory for the dynamics ot initially
stressed celistic solids, and (2) to present a variational princi-
pie which will serve us the trameworkh for the syvstematic develop-
ment of approximate theories for the incremental motion of pre-
stressoed rods, beams, plates, shells, ete. Additienally, the
derivations will clearly show how the apparent mechanical proper-
tices of the solid are altered by the pre-stress.  To accomplish
these objectives, the tfollowing assumptions will be made:

(1} The solid is hyperelastic, j.¢., 1t possesses

a natural state in which all stresses and strains

vanish simultancous!y, and its mechanical constitu-

tion is completely characterized by a strain cnergy

density tfunction which vanishex ip the natural state.

{2) An arbitrary pre-stress causes the initial de-

formation of the solid from its natural state to the

SM Nreatves, 2 (1977 Jla-185
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r
it s tate. fhos anatial comtiauration
correspond s toon Static o equibibrinm state of
the —olid which 10 onot necessarily stable.
Soodhe ancrerental votion of the solid aboat
Pt initial cont:ouration shall bo surtficient]s
small to warrant Dincarioation of the resulting
theory on the bhasi of <oall o detorn-
tlon=, Notce: o the maenitade of the initial de-
Yorration e arhitrars . oonly o thie inerenentad
doetoemat oo b aeswaed to he ol
Phe approach to be dodlowed i the derivation o8 the
P et iens bxoas Yollownes The total detormation ot the solid
Lo cepartated into two parts=: b the qpitial detormation, and o
She fnorenental Jdotormotion. Lhe 2trarn encrey density function

the constitntive velation are hoth developed a3 power series
in the increnentad Jdetormat ion abont the initial state.  Rasced on

thoe o assnnption o <nadl iancrerental detormations. the power sorie
for the srrain cocer:y density g terminated atter the guadratic
tori~ end the power serics tor the constitutive relation s tern-
ioated atfter the Lincar terss,  This presalts in o linear relation
Setween the incromental ~tress and the incremental detormation.

P also clearty shows how the sechanical propertices relating the

prcremnental o stress oand dotforsate o Jirfer from those neasured in
the nataral states Vor evanpdes o celibd which Bs o isotropic o in it
patnral o state pany o appo o to beoanisotrepic when stadicd inoin

initial <tate. farthersoro, cuantitics such as Young's modulusy
Poilcoont' o ratio, Jilattonal oand rotational o wave spoeoeds, o ctoen,
shen measured frors the andtial o <tate s will ditftfeor froe the valin
bt rined byorcea sarenent s pande s ithorespect to the nataral o staty
P transcted power serics for the ~train eneroy dens ity et on
veonest abetatated inte Mamiiton's Principlte. This vicelds th
Pincar oguation: ot mot ton and proper noataral boundary cond e rons

for the incremental motion, At this point g variational princinh
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soverning the Tincar theory of pre-stressod clastic =olids ix
presented.  this result provides the logical framework tor the
caterat oo doevelopment of special approximate theories tor pro-
stressed rods, beams, plates, shells, ete. A resolution of the
resulting boundary value prohlem tor the incremental motion of
solids ot bounded extent ix obtained by the application of ¢lass-
ical, mathematical techniques.  In order to illustrate how the
results of this investigation can be applicd, two specitfic examples
are presented: (a) motion of a solid subjected to an initial hvdro-
static pressure, and (b the motion of an initially stresscd boeam.
Problems relating to the behavior of pre-stressed clastic
solids are of considerable interest to both enginecers and physic-
ixt=. Ingincers are routinely faced with the problem of analviing
and desiuning structures containing pre-stressed members,  Jhis
invariably leads to the question of stabitity (or instabilityr of
the initial contiguration.  The proper way to assess stability is
to subjoect the pre-stressed solid to incremental surface tractions
and-or initial conditions and to observe whether or not the re-
sulting incremental motion remains close to the initial contianria-
tion. It it Jdoes then the inttial contivaration i< stable in the
sense of Lagrange and Liapounov.  The closeness retferred to above
must be defined analvtically in terms of g specific measure of the
incremental motion, ec.g.. the squarcd norm of the incremental dis
placement . Morcover, it the external forces which induce the
pre-stress oare conservative, then the initial state is also stahle
in the classical tuler-lagrange sense, i.ce., the potential encrpy
of the svstem assumes at the cquilibrium position a weah relative
minimun in the class of virtual displacements satistyving the bin-
ematical constraints.  An oceaveellent treatise on the theory of
clastic stability by Knops [ 1] appears in S, P Haonge's bnevelepediag
of Physics.  He investigates both the Liaponnov eriteria and the
cnergy criteria for stabibity and <hows when the two are cquivalent

and when they are not. | Bolotin [2] has also investipgated stabitity
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. from the dynamical viewpoint with emphasis on the study of non-
conservative external forces. In addition to questions of stabil-
ity, the study of pre-stressed solids has been pursued because of
its applications to the field of c¢rystal physics. The material
characteristics of solids subject to initial hydrostatic pressure
have been used to test various atemic model potentials for crystals,
to study anharmonic crystals, and to study various thermal and
clectrical properties of crystals. The field of acoustics has
also come to play an important role in the present subject because
most of the experimental techniques used to study the material
behavior of pre-stressed solids are based on ultrasonic methods.
[ In view of the importance of the applications mentioned
above, a great deal of literature on the subject has developed.
Here we will cite only those references most directly relevant to
the present treatment. A more extensive list of references may
be found in [1] and also in the treatise on non-linear ficld
theories of mechanics by Truesdell and Noll [3]. As pointed out
in [3], Cauchy successfully derived a lincar theory of incremental
motion superimposed on a pre-stressed clastic body. Cauchy's cq-
uations are given by Todhunter and Pearson [4]. Saint-Venant [

attempted to duplicate Cauchy's results using an energy principle.

However, his results were not valid because he did not retain the
uadratic terms in his expansion of the strain energy. More re-
cent derivations of the lincar theory for incremental motion
superimposed on finitely deformed clastic bodies were given by
Toupin and Bernstein [5], Truesdell and Noll [3], Green, Rivlin
and Shicld [28], Green and Zerna [29], Knops [1], Eringen and
Suhubi [6]., Of these, the one which is probably closest in spirit
to the present variational approach is the derivation given hy
Knops based on the invariance of the rate of work cquations under
arbitrary rigid body motions. The results of 28] and |29] are
identical to the ones in Scection 2 of the present investigation,

but they arc obtained in an entirely different manner. Applications

2hdas olooa
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of these results to particular cases of initially stressed solids
can be found in [30] through {35]. We also mention the contri-
but ions of Biot which are sumnarized in |30]. In this latter
treatment of the initially stressed solid, variables are tailored
to the specitic asymmetry of the physics and geometry of the pro-
blems at hand. In many casces, such variables are not tensors.

By sacrificing the requirements of invariance, this work does not

scem to fit into the main stream of modern continuum mechanics.
2o ANALYSIS AND VARTATIONAL FORMULATTON

Throughout the forthcoming analvsis, standard Cartesian tensor
notation will be used, with all particle coordinates and tensor
components referred to the same, fixed, rectangular Cartesian
coordinate system. Three different configurations ot the hyper-
clastic, solid body must be distinguished:
{1} In its natural state, the body occupies the
region Vu bounded by the surfuce S“ and the co-
ordinates of a typical material particle P oare
denoted by @, The stress, strain, and strain
cnergy density all vanish identically throughout V".
(2) In its initial (static cquilibrium) state, the
body occupies the region Yo bounded by the surface
SO and the coordinates of P oare denoted by x?‘ Ihe
Cauchy stress tensor, Lagrangian strain tensor, and
strain energy density are denoted, respectively, by
9,
ij ij
{3) In the current (or final) state, the hody occupices

and W*.
0

the region Vi bounded by the surface SF and the co-

ordinates of P are denoted hy x?. The Cauchy stress
tensor, Lagrangian strain tensor, and strain energy

. . ¥ AR .
density are denoted, respectively, by Tii' hii' and “F.

The initial deformation carries the material particle P from its

JreTe
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locat ton l‘.l (i ya, i) in the natural contficuration to the loca-
) A
. N 3] o O . P .. . .
tion | S A the initial configuration.  lThe increment.al
1
. . , . . . ! i !
detornition then carries 1t to its tinal location | IR N
Fhe components= ot the incremental displacement vector RENRY
v !
he denoted n e i.e., ]
4
I O .
1. = X. - X, [
i i i

Bathore et

to the natural contiguration, the in

controurations are described by

th

Coohe-to-one bl

Ptial and carront

ppinges

v 1 g !
A S IR | B
i 1
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Comersely, with respect to the initial contiguration, 1
o L [0} N 4
Ay Ali (N7 X oNL) [N 3
and therctore 12020 can also be written as 4
! I %) (8} O R .
'\i = \l.i.\)..\,.xa,tb QR 4
Stnce the results of any measurements pertormed on o pre--tresod
body are obtained in terms of the initial coordinates, we shall
nltimately eapress all results in terms of these coordinatos
nsing (2.8 and (200,
Fhe Lagrangran strain tensor, Cauchy stre. tonor, and
constitutive relations are detined by the tamiliar relation e
for cxample Chapter 9 of |7 {
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i< the strain enerey density fanction, 1oeo, the St

per unit volume of the natural state. o S G0 -‘[7
I’ . . . .
dp dety AR the Jacobian detersinant of the tr
]
12.2b Upen substitution of (201 nto D000 we rind

total strain can be written as the s of the dnitaal

an incremental strain,

(8] (A
'\ o\,
| 0 k :
oo, L = | - - !
il 1 [RIRH h
1 |
\() .\(7
O ] ' "k r
where, o= L0 - EENVI
11 - ARL I il 11
| i

i< the initial strain ana,

1< the incremental <train reterred to the initial state

i< used to denote partial different cation with respoct
L ) oo Bt
initic]l coordinates oL dLel, 'II; " " )

i . : L,

Woe now assume that the <train cncerosy density
torether with its partial Jderivatices up tooand ncelndi
third order in strain, exi=t and arce continaons ot 1
statel. In this case we can ase Tavier's thcorem ta ap
in the nerghborhood of the anitial <tate, by o tunction

quadratic in the incremental strain, ...,

or o in oview ot (2.9,
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i j - i i k {
o 1 0 .
= W* + J Y ST . B 2.10
Wo 0 (Tl)}lj t o Bl)lelj}kQ) (=10
where .
o JW* is thc'§ymmc{¥1c R
li = 5F Piola-Kirchoff (2.11a) 3
J ij fo pre-stress tensor,
0 ,.0
Ix. 9x, . R
1% 8\) 0 is the Cauchy 5 )
T.. = J  w— r {2.11b)
1) o Jak 8:\2 ke pre-stress tensor, h
A
T g
0 o° 3} 0 [
.. S I e et = A\ ,.. = AL, = A, 2.1
Mk JE. O Keij o~ Tiike ijivk ( ¢
; i ke
3x2 3xf n’ Bx?
O SRS T TR A SN (1
ijike o Ja_ da_ da_ da_  pyrs o
. p r s 1
and .Ax(i) 4
- 29 e — M 3
‘)0 = det v . (2.11cn
J
Next, the strain-displacement relation (2.9¢) is sub tituted into
(2.10) and the assumption of small incremental deformations and
rotations is imposed to obtain, atter neglecting third und fourth
order products of the derivatives uy
o 1 0 0
* = W o+ ) 1.0, 4 . T, . S+ B e e R
WF 0 Ole(1J 2 ’0 ! ljuk,luk,J |Jk:k11Lk.l {
where
1 3
e..o= S (u, o+ u L) . 12.13)
i 2 )) J-l)
In view of this result, the totual strain enerpy of the body is 1

given hy
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= * 4 = * - O & ! 3 g
Uy [ Whdv, = U% + S [iitiid\o + U (2. 1y
v \ -
a )
where
U* = [ W*dV {2.14b)
o | o a
a

is the strain energy associated with the initial deformation, and

jed
it
ta|e—

f (T?juk,iuk’j + B?jkicijckﬁ)dyo (2. 1dc
0

is the incremental strain energy. To obtain these results we made
usce of the relation dVO=J0dY“ to transform the volume integrals from
the natural to the initial configuration.

Consistent with our quadratic approximation tor W*, we

I
can also write
A 1\ W T O
i ol ali, . NS
ip ijjo
.0
o o dX d.\\_
= AL R |
i iiRE Oa, da, rs
£,
Ja, 9da
i i 0 [¢)
T T T * ><r<:r<'
IX T OX Pd pars
P «
Therefore,
| .t
JX. JX. .
Tl - l-l T ] 1}
ij " Bnk aa hi
_1 I
=07 X e wY (2. 151
LD olag py prs rs
. R F . .
In view ot (2.1), Xx. = 6. + 11, ,and thus for small incremental
i,p p (Y
detormations and rotations,
8 8 ,
NLOX, R T S | o, . (2.16)
LY LR sy po.y g bp




135 .‘,. ’ R ’
- -1 -1 . 21 | .
In +2.15), 0 = 3, and theretore J = 0. = det{x. . o= det :
o o 1,1
((S.l.l £ i) is the Jacobian of the increvental detorsation.  For
. 3

small incremental deformations and rotations,

Jo= 1 +u = 1+¢ and theretore

Substitution of (2,16} and (2.17) inta (20150 vickds, after neg-

lecting sccond and higher order products of the Jderivatives n. P
1.
1 O R .
T.. = T.. + T.. SLoisan
i i] il

where

T = IO u + Yo Y 2RV L A Y
- . - . LI . JR IR A N
] ih i,k i 1.k R NEN 1ik- K.
1
or, in more compact tform,
K
0
T. UL [ YO
1) Pik: K,y s
\\'jfh
(8] Q O o O
( = 1] + . ~ 8
1ike iv ik 11k i1k itk
(8] {1
P 0. . Sobsd
(_”)\; ii-h '

Lquat ion (1. 18b or <) i the constitutive redation for a small i
cromental deformat ion superimposed apon a finite initiad detorrs
tion. U was tirst derived by Caonchy in 1828 [T However,

Canchy's derivation of (2018h) was more ywenerstl tian ours i dha
he did not appeal to the theory of clasticity bat rather shovod
that (2. 08h) is the most general bilincar function ot . tind

[ i
that satis<tics the principle of material frame indifforence . e

staleds,

the note on page 250 of |51 in this recard.,




vhe constitutive relation (2.18¢) can be rewritten in terms of

the incremental strains and rotations according to the tollowing

scheme suggestod by Dhrabble 8]

- Q N + I)“ . (2. 1va
i PPk ke ik e too i
where
N -u - ¢ = ! Lu -1 ! (2. 1000
I\ KN, NS N koo ok ‘

is the skew-symmetric, incremental rotation tensor, and

L0 0 I o Q 8 O a
S = B L e
tike ke 200k I EN ki i NN ik
(SR RN
0 l o) O O u
R = [ - AR B ' oL 1ads
Sk 2 AN CIK ik NI '
These cocfticients possess the svmmetr  propertics
O \,'U . O
Lik Ciike iih
[ ST
T T
1k Tk ik

It s evident trom (201910 that the incremental <tress cannot b
related solely to the ineremental <strain unless the pre-stress
tensor happens to he spherical chyedrostatic preossure or tension.
or ¢lse vanishes.  Tquations (20010 and (2,090 reveal preciscly
how the pre-stress alters the apparent mechanical behavior ot the
sulid.  For example, a material which is isotropic in its natoral
state will appear to be anisotropic with regard to incremental de-
formations obscerved trom the initial state unless the pre-stress

tensor happens to be spherical, and ceven in that case, the moagni -

tudes ot the clastic constants will be altered in accordance with

to 0.

Lasd
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We shall now proceed to derive the linear equations of

incremental motion for the initially stressed solid using
Hamilton's Principle. As shown in |[T], Hamilton's Principle for a

hyperelastic solid takes the form

t T-
SSlpde = - S (2,200
[} t
where Lp o= I - Up is the Lagrangian function corresponding to
the current state of the body.  Similarly, Tp and “F dare the total

Kinetic energy and total strain energy associated with the current
state of the bodv.  The variation Sl = 87T -8 results from
allowing small variations of the incremental displacement vector.
ihese variations, Sui. are arbitrary throughout YO, consistent with
the boundary conditions on SO. and vanish at the instants of time

ty and t:.  The quantity ;\‘l\'l_. is the work done by the external forces
as a result of the variation Sui. {These forces need not bhe con-

servativer.  In view of (2.1,

Str.oo= Su .+ §u (2. 21
13 0
wvhere
SU_ = 7 Y (Su., . dv
O . 1] 1 1 3]
\ - -
[§]
= f T?du.ds + 7 0 fQSU.dY (2.22a)
q 1 1 [§] \ Q1 1 (4]
"o Q
and
su= ;Y. u LS I
R R ST AR AR

i
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where

Q o . (6] -

b= 1. 8., + B, = D7 . (2,250
1jke IESREN 1iky ki)

[0 (8} Q -

= (L., 0 - TS+ L L, (2.23h)
FRRN ek iivk

In the derivation of the second cquation in (2.22a) and (2.22b) we
miade use of Gauss!' Theorem to transtorm tfrom volume to surtface in-
tegrals and we also imposed the equilibrium conditions on the initial

contiguration, i.e.,

(o] .Q

i.. .= -2t inV (2.24a)
L, o 0
0o o0 .0 .
i..n. = T, on S . {2.21h)
11} 1 ]

With the aid of (2.19a), (2.25), and (2.21), *he variation 8U can

also be expressed in terms of the incremental stress as follows:

o o o o .
SU = ..n. - T, U, . ToeyAu.ds o -
l i (TUIIJ le“_x,kn_l + llc)mld o
S, o
o o {2.25)
- L T.y . foe)du. dv
{ (llj,J t]k’Ju"k 0y lo)ﬂuld\o
0
where C=Ckk=“k,k'
The total Kinetic energy of the body is
| sFel o] ML
IF =5 { xixip}_.d\F =54 “i“i“od\o
V.. V
F 0
and, therefore,
6IF = { uiouiood\o = 8T . (2.20)
V
0
Since Gui Z0at t =t; and t = t,,
t2 t, .
J 81Nt = - S f u.du.p dv dt 2027
. i it o
t ty \

0




vhere o dot denotes the partial derivatine with resvect o

Fhe eaternad torces carrently acting on the bhody com st ob
. . ! . A
face tractton | i and o body foree 7

: i

cosoauring the virraal displacement s s civen i
; .

Phe wori dopee B the o

. { . . A
\\! - . Ii u‘d.\l_ + \_ A “l\l\l
1 B
W}
= I} Uds L ’} [EINAN
N 1 v \ (R 1 v
ol [l

whore we have used the comservation of

torm the velume intepral from \l to VL and s heve orso Doty
0 +)

the notation 1h 1o represent the value ot the final contact o
i

poer oanit oinitial arca. i.ce.,

The elements of surtface Jds, and d5 are coelated as Sol o 17
(8]

I I
~,0
n‘ Is = t\»i ' s
N R "o
h

I O .
whoere nk and nyoare the unit outward normal- to

and > Lo respect ivelv,  Consequent iy,
. \

dS,0 = JdS
I 0

which, tor small incrementay detormations, 1= approvinated s

IS I RS
A = +1) - RIS NI | .
R lk,l\ ll_VlliAl 0

Substituting (20500 into (20290 then vields

ll,‘ )
A ot
li = Iillmk,l\ - (.:n.n.[
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W o Jdetine

por unit o oinitial

Ui s

Sehestitution of

H,
i
where
W
o
and
W

an

merertental o surtace

Area) oand an

S
Y
KRl
t
i
JLA20 into a2
I LIRS
O
8] .
oruds o
1 1 (8]
(%]
II U d\‘) +
(8 .
\

triaction |

tnereacntal bady

s

fhe incremental surtace traction 'li

Tl

thon yvields

detfined by

mercaental

for e b thy

t

oo e

e b

2

[ 2.5210 corresponds

to ty in 530, and to lt}«t.ln tn LU, However, Lringen and Suhubi
A
.. . . : . I 0 .
jo] detine the incremental traction ri as o simply li-l . In view
ot 12031 and 12.32) we see that our incremental traction is re-
lated to theirs through the equation
O [N -
I . T, [u c.oonn 120565
i i i l [N N i i ‘
with the incremental de-

where we have neglected products of t,

tforpation u,

v

The variational principle governing the incremental

motion may bhe obtained by substituting (2.21),

into (2.20).

With the aid of

the variational cquation

to

t)

{

Sy

- S0+ sl dt

{

5

22a) and (2.31

{2,201, and

{

2.35)

) this results in

P

e
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The use of (2.22b), (2.27), and {2.35) in (2.37) vields the dis-

placement equittions of motion and associated boundary conditions

) - .

p.ooou ) L+ p f, = 1. in vV 2.38a

( HLE N N Poti Pati 0 ( )

.

§ u. = F.o(x,t) on S {2.38h)

1 i !

0 0

). o= T. m S 2. 38¢

1”}\.‘“}\,.‘"1 ll on o? { 38¢)

Similarly, the substitution of (2.25), (2.27), and (2.35) vicelds

the stress equations of motion

o . 0 - . .
T.. . = %., .u, + o (f-ef) = hu. in {2.39%)
Y1, ik, i ik to i o i o
u. = F.(x,t) on S 12.39h)
1 1 0l
Q - (o Q 8] L0 . -
co.on, =T, + o u, on, - e on s (2.39¢)
1y i ik i,k i or

[r. the preceding equations we assume that SO is the union of the
cwe, diaioint sets Sm and So"' Note that in the case of a constant

notial o pre-stress, the stress equation of moti . becomes
+ 0t = u. {2.39d)

Yortally the same as in the case of zero pre-stress.

consery the boundary condition (2,39¢) does not simplify any

Tortcers N third form of these equations may be ohtained by sub- 1
Surtatang 2025 into (2.38). This vields,

O L0 .0

0 Hi-il\“i,l\

“i_lh“k.i),_i * jl\“i._ik Y% ) o= ol my

2.40a)

u. = F.(x,t) on s
1 1 01!

(2.40b)
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0 0 0
B.., ,u n, = T.-T u. on S (2.40¢
Pijhe Kk, 80 { ki,k or '
For many technical applications it can be assumed
that
19 « L0 Lo ce 10
|G I L Lol BT
Uit ik i k,ll ks
. . R 0 0 .
and, with reference to (2.18d),we then have €., ,=B.. . As a
o Piks Tiike
consequence, using (2.18¢y, zii:B?ik'uk ., and in this case cyua-
J . . s

tions (2.40) reduce to

> . .
.. . 1., u. .ot f.o=p ol

11,] ¢ ik 1,kJ,) o't Foli
u, = F.(x,t) on S

i i 01

o o

T, . +T . U, n, = T. on S

( ij jk l,k) i i on [o X

where we have utilized (2.24).

These cquations have the same form as (1.34) and (1.35),
page 16 of [2]. In the case of a homogencous body subjected to a
constant pre-stress, (2.40) becomes

B¢ o f.= p i, . (2.41)
> 1

o
. ¥ . LA R § S + .
iikek,ie  Yiki,jk o i C

This form is identical to cquation (iiil}, page 84 of [4] and is

attributed to Cauchy (1829). The syvstem of equations and boundary

conditions (2.38) also appear in: [1] (p. 180, (23.17), (23.18),
(23.191): I3] (p. 247, (68.9)); and |6] (p. 253, (1.2.30), also
sce p. 254, (4.2.34) compared to our (2.401). The present deri-
vation differs from these others in that it is based on a varia-
tional principle (2.37) which, with suitable restrictions on the
class of allowable displacements, can be used to derive special

approximite theories for pre-stressed rods, beams, plates, and

shells.




N . <) o
Voo e it o the svipnetey relation Do 0 one
) : [0 NP N
Cotoea L o that ottt recaiprocal theorem holds for the o
e vt oo Lo,
- (I {
1 | n Jve | ¥
' i ! 1 [l [ i
! N
v o
| ) L - [ ) \
1 u . dvooe 1 u, ¢ I I
W I i ) O . | 1
\ N
0 O

Frocsdell and Nolb [a) chow favther that, "in order that Betti's
theoren shaltl hold for intinitesinal detformitions superimposed on
any given configuration of an clastic matervial, it s necessary and
sufticient that the clastic material be hyperclastic.”  they then
use (20120 to prove that, “tor intinitesimal froe harmonic vibra-
tion abont any configuration of o hyperelastic bodyv, the nornal
tunct ions corresponding to distinet proper frequencics are orth-

ovonal,”™ i.e., when

. . [ .
!.l] f‘t.( l“l'_(l)—].( )tl\ and u, H.(‘ Intcos ot .
i i i i i i :
A
ui“ =l ( {ajocos t
then
- el 10
(.~ |- \“i lli d\0 e
L
' \
O
or,
S ‘Hil‘)ni[’]d\‘rn [ IR
L < 1 )
\n

Pracsdet! and Notl 5] and Hill [37] derive the following cacrm
criterion for what they call intinitesimal stabilityv of the initial

~tate,

2 S nL 1A} S b




e

—_—

e ol B

where U is the incremental strain energy associated with any in-

cremental detormatton which is compatible with the boundary con-
ditions. Kpops |1] also obtains (2.14}) by requiring that the
potential energy be a weak relative minimum at the initial cquili-

brium state. e refers to this as Hadamard infinitesimal stability

since (2,01 necessarily implies that Hadamard's inequality B
Q
Doy o, 0 2.5
ik i k'J]T - ( ! 3

holds at every point of Vo for all vectors Tpoand Ny Knops

turther shows that for conservative loads, (2,31 ix necessary but ¥
not sutficient to guarantee Liapounov stability.  For cexample, in *

the case where the initial ecquilibrium state satisfies displacement

or mixed boundary conditions, the inequality

conoLdvo s S T s dy (2.10)
\' B

(3] Q

for atl syvmmetric tensors ;ii and some positive constant d is
suftficiont to guarantee Liapounov stability. If the initial state

is maintained solely by traction boundary conditions, then in

addition to (2..16), the restriction

n GidY =0 (2.1

O

1s necessary to prove Liapounov stability.  The measure chosen in

these cases is

ofu) = o ouou,dy (=48]
(S T T

J
v
0
[t the criterion for infinitesimal stability (2011 Qs
satistficd then one can easily show that (2.38) possesses at most

one solution it the initial displacement and velocity are specitiod




LIS

throughout Yo |3]. Furthermore, the natural frequencies associ-

ated with free harmonic incremental motions (fi:n, Ti:“' Fi=0) of
the torm ui:UiLxlcus ~t are real.  To prove this, multiply (2.38a)
by “i' integrate over Yn and impose the homogenecous boundary data

to obtain

S0 00dvoo s 20 0 (2.49)
v Q11 O —

Q

Ihus, AD;U. In the case of strict inequality, U0, (referred to
as superstability in [3]), we further conclude that no natural
trequeney can vanish,

An energy continuity cquation can be derived for the
incremental motion by imposing the conservation of cenergy law in

the following form:

AL s afhas e o s, (2.500
dt . i ik v ik

: I.‘ l.‘

where
E* = [ plerdV,. = oo erdv (2.50)
; ¥ o 0
\ \
I 0

and ¢* is the specific energy of the body. Substitution of (2.297,

(2.32), and {2.51) into (2.50) vietds

J ‘Ti+T?’GidS> + po(ri+r?)ﬂidvu .
\ S Yoy

(8 O 8

t
o
[

The equilibrium and boundary conditions tor the initial state
together with (2.38¢) may be used to reduce the right hand side of

12.52) to

2]
o

oL
S0 dsS (2.5
| ] O




whoere

Fhe quantity s is called the encerpy

to vepresent the energy flow per unit arca, per unit time out ot the

surface S
(8]

1

integral in (2

Fhe application of Gauss

flun vector <ince it is

iy

[oen

fheorem to the surtace

.53) then vields the energy continuity cquation,

Stated in words, the local rate ot increuase of cnerpy is equal to

the rate at which the body torce and

the local rate of effluxn ot eneray.

inttial

3.0 FORCED MOTTON OF AN CINTIEALLY STRESSED

stress

SOLITD

Jdo work

minus

One ot the central problems arising in engincering applications

ot the theory developed in section 2 is the tforced,

motion of a hounded, initially stressed solid with time dependent

incremential

incremental torcing tunctions and boundary conditions.  We

resolve this problem in the manner o

classical mathematical techniques.

t reference |27

With retference to the development

in

| using

Section 2, oa

posced torced motion problem can be stated as follows.

Lquation of incremental motion:

N

Lo
1),1 01

wvhere

and

R L
ijke Kt

v, = o L in v for all ot
O 1 8}

shall

well

TR

e

P

&l

ok ai st
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Boundary conditions:

u, = F.(x,t) on S [T Y
1 1 Ol

" O . .

o= ooon, - GoUxL,tYy on S o len
1 1] ] i o

)1
solid in the initial configuration.

where S):S *S) is the total surtace of the inttially stressed
0 o :

nitial conditions:

{x), 1.1.1(.\,«\) E \.n.lw)(\\ (3.1t

AR
u.l(x.o) = u.ll

throughout \‘0 at t=0.
It can be shown that the solution of the problem as characteri-ed
by cquations (3.1) is unique it (2.0 is satistied (see [3], p.
2500 .

To obtain a solution of {3.1), we proceed in a manner
simitar to [27], i.c., we assume @ solution of (3.1) in the form

Nt = ui("’(x.tv oY ou
m=|

(m) .
. )
. (N eqg ) (a2

The "gquasi-static" part ui('\)[\‘,t) of the solution satistices

equations (3.1a) through (3.0¢) with inertia terms in (3. 1a

Jdeleted, 1.,

(ISR - . . . R .
ST 4 =0 in Vo for o all ot [N
1i,1 oi 0

(=1 {1 o s) o (s) 0 (s -
L T e R ] - 1L, =D, RSN
i i i K.k i i, Il)l\x“ku (2
(=) . oL
. = Foixn,t1 oon S (BRI
1 1 Ol

I'(J\) = '-(.\.'n(. = Goix,t) on S {a.adn
i [ i 0

N

L
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) . . (n)
Fhe cigentunct ions lli

are characterized by the cquations

= 0on N

oo the associated homovencous

oy LI
i rablorn
Lo

'

[N

'

L
~L N

In the tollowing we shall assume that the criterion

for intinitesimal stability (2010 s satisticd for all

this case (sce Section 2, the cinent
numboers.
{super-stability, 3]0, we can conclude that no clueny:
vanish. thus we shall rule out the trivial selution “i
the rigid body displacement ticld ll“”! ;i&l:‘xli\l. where
are constant vectors and }E‘ ix the position vector in\
cach vigentunction UE”” there correspomds an cisenvala

is a natural frequency of vibration.  We shall

‘m
characterication of the cigenvalue problem (3.4
. . oo .
denumerable set of solatiors 1ll.l N N e
Bl

valino s oare real,

t

T, In

DSy e

O, in addition, we impose the strict ineguatity 0o

tlie can

o

vooand
and b

Lo
i whotro

assume that the
results in oo

I the

rigid bodv motion is not an admissible cigentunction, the case of

a vanishing cigenvalue does not arise, and the ot

be ordered as
-

cenvalues can

tfollows: O o7 o L I there are no depeneria-

cles (ioe., it the cignevalues ave distincet sy, the vigentunct ions

can be shown to be orthoponal, 1 degencracies ocenr,

(YU

two or more difterent cipentfunctions correspond to the same cipen-

virlue, cach set ot degenerate cigentuctions can

by the Gram-Schmidt process.  In cither case we have {scee

Pt e e
o i 0 n

he orthosonalised

W

LAt . ax
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where Gmn is the Kronecker delta syvmbol. LEquuation (3.5) also

implies that the cigenfunctions U;m) have been suitably normalized.
In view of (3.1d}, (3.1¢), (3.3¢), (3.3d), (5.4¢), and

(5.4d} the assumed solution (3.2] satisfies the non-homogencous

boundary conditions (3.1d) and (3.1¢). To determine the scalar

functions qm(t) we now substitute (3.2) into (3.1a) and (3.1b).

If, in addition, we apply (3.3a), (3.3b), (3.4a), and {3.4bi, we

obtain

8

m)

no™

{
pOUi

| (qm+mmqm) U 15.04)

m

Similarly, if we set t=0 in (3.2) and substitute the resulting

equation into (3.1f) we readily obtain

0
z Ugm)(x)-q (o) = U.(O)(X) - u.(s)(x,o) {3.6b)
i m i i
m=1
mz_:l%m)(x)';{m(O) = ‘.'i(o)(-\) N "‘i(s)(-\',o) [5.6¢)

Now we multiply (5.6a), (3.0b), and (3.6¢) by U{"’, oau;“’

(n)
i
the volume Vo. Upon application of (3.5) we obtain

, and

DOU , respectively, and integrate the resulting ecquations over

Qm *uwqo = Qm(t) for t>0 (3.7a)
U (0G0 = / 0 U™ (xyeu, © xyar, (3.7b)
o
ém(O)—QmIO) = { OoUgm)(x)-ﬁi(O)(x)dvo (3.7¢)
[0}
where
Q(t) = - 6 uoui(s)ui(m’dvo (3.8)

(8]

a e

caniingle
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A more convenient torm of Qm(t) can be obtuained with the aid of

(3.0a) and (3.4b) as follows:

- tn (BRI .ot [
(A)‘(\)] ter = - . 'I.l”i lli ° \1\( =, lI ilI. ) AN
mom . ! ) . ) 1 8]
\ \ Js
O (%)
- [N N 4 [ .
= . ll I.ds - . ]? 1i \i)d\)
) .
1 4 \ . y t
¥ V)

But ) S.oler, and thererore
i, 1
. | S . Cs ) - : te, . e =
wgi’nf‘.d\):_ L LU LR ptt)
{ . R O . . N
R [ I \ J R \ A R L \ L
4] (8} [ O
s I R r R
ottt Egs o ou T Wt
o1 1 0 1 Pike K, O
\ -
0. 0
.- mlo - R
= caut™as e oty
11 O O 11 O
\
(% (8]

where we have used the integral theorem ot Green/Gauss/Ostrogradskii

and (3.3d), (3.3b),and (3.3a).  Conscequently we can write
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The solution of (3.7a) is
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t
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Thus the formal solution of the non-homogencous probhlem posed hy
{m}

i m”
m=1,2,5,...} is the complete solution set of (5.0 which also

(3.1) is given by (3.2), where ug'\') satisfies (3.3), {Uu
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satistices (5.5, and the scalar function gt i oo b 5]

in conjunction with (a0, (i ™y and 8. 7¢
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In view of (J.lay and (2,195, the incremental stress-<train law

becomes
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where the superseript a refers to the natural state. Tquation
(oo verities our assertion that only terms up to the third order
{or secotd order clasticities) are needed to obtain the linear
correction term tor '\‘ilik- .oosubstitasing (4o Mdy into (305 and

(1.0 vields the result
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For a homogencous, isotropic medium,
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where (1, ! and (v?. v?. vt) are the Lamé parameters of first
dand scecond order olustici%y measured from the natural state.  Here
we are adopting the notation of Toupin and Bernstein [5]. Substitu-

tion of (1.1a) and (4.7a) into (4.1t vields the relation

- i .
y &, . = 1-2 ) L R S -
Py 1] { 0 I o tikk 2o ljkkmml
and since we are scekhing a lincar correction, we may Jdrop the
term to obtain
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where K‘lx'\‘x + By ts the bulk modulus measured in the natural
< al <

state.  Further substitution of (1.8b1 into {1.7h) vields
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and further substitution into (4.3), using (1.9 vicelds, after

lincarizing with respect to Ly
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Note that the linecar correction term has now been put in terms
ot the applied pressure Py The substitution of (J. 11} into (4.2)

now vields the incremental stress strain law,

i = Vel o+ Zno (BN
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o= - -397(3\ 3 eaiend (1.13)
o] a :oi\,l a a ‘ ’

The quantities \0 and b, are usually referred to as the apparent
clasticitics of the pre-stressed body.  Similarly, we mav define

an apparent bulk modulus from the relation
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Substitution of (4160 into (2.38%0 then vields the cquation

the incremental motion,
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and the associated natural boundary conditions

From (1.17a) one can readily show that, tor an uanbounded

free of body forces, two <olutions of the torm
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This <ame result is also obtained by Toupin and Bernstein |5

well as by Thurston and Bruzger [9]. In an carlicr paper,

(.om

Birch

153], derived a restricted torm of (1.20)0 based on the assumption
|

that W* is a guadratic function ot the lulerian strains, rather

than the Lagrangian strains.  In terms of strain invariants,

Birch assumed that

th.2

These are related to the principal invariants of the Lagrangian

strain tensor as follows:
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the substitution of (4.22) into (4.21) vields, after neglecting

terms higher than the third order,

Wt = (1:¢ZHIZ ST PR AR TN N O (R TR PO TR N IR TR B N
2 E TR TR - AR ¥ - L

(1. 23a)

On the other hand, substitution of (1.8) into (4.4) vields the

result
. A2 R 5
R L T AT
1 X X .
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¢ I~ I8

Birch, has therefore assumed, instead of three independent third

orduer constants, the values

vy = 4 Soo= - 2% Ve = =0 (1.24)

These values, when substituted into {(1.20) yield Brich's results,

CLge,
L2 y i a
o - a “Ma Py 1527 +1.4y
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These formulace are very appealing since they contain only the first

f s a a .
order elasticities 37 and p° and they also predict that the wave




spoeeds increase with pressure as one might expect.  However,
recently Soga and Anderson [15], have shown caperimentally that

for isotropic, polverystalline In0) specinmens, the shear wave

speed decreases with increasing pressurce. This result can not be
predicted using Birceh's formulac 11,2500 However, the general
result (4.20 can predict cither an increase or a decrcase in

wave speed depending on the values ot the sceond-order elasticitices
fthird-order clastic constants: E_‘, A L Inoa later paper |11,
Birch docs adopt the Lagrangian viewpoint and include the <ccond-
order clasticitics in his study of cubic crystals. lntfortunately,
many authors still use the carlier results.

A preat deal of literature enists on the determination
of the sccond-order clasticities for crystals.  We wish to point
out again that these are also commonly called the third-order
clastic constants.  Reterences [160-20] contain summaries of the
available data and give extensive bibliographies to the existing
literature.  The isotropic clastic constants of polyveryvstalline
aggregates can be computed trom single-crystal data using averag-
ing techniques suggested by Voigt, Reuss, and 11ill.  Anderson | 21)
has applied these techniques to compute the first-order clasticitics
of scveral substances. Hamilton and Parvott [22§, Cousins [23],
and Barsch [24], have further appliced these methods to determine
the scecond-order clasticities of quasi-isotropic materials.  How-
cver, the values computed by these averaging techniques are
approximate in that they ignore the complexities introduced hy
voids, inclusions, and grain boundaries which oceur in reual
materials.  Ledbetter and Naimon [25] have recently suggested o
new averaging technique based on the equivalence of the Debye
temperature tor single crystals and polyervstals of the same
material.  Although Toupin and Bernstcein |5] have outlined a
series of five independent experiments which can be used to de-
termine the isotropic clasticitices, ‘”. h”. VT. Vq. vf. very

little experimental data is available on the values of the sccond
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it .
order clusticitios fur isatropic matertals,  saith, Stern and
stephens [ 20] reported values of the first and second order
clasticitios obtained by the ultrasonic pulsc-ccho acthod tor
Five steel ablovs, Uive aluinum alloys, magnesion tooling plate,
molvbdenum, and tung~ten.  The values viven in lable 1oL are

Laken from that reference.  Using the data in Tuble bl we cin
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comput e the pressure derivatives of the wave speeds and the
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vorions clastic constants. These are presented in lable | AR N

simplify the computation we introduce the dimensionless quanti-
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> With the exception of Poisson's ratio tfor wmolybdenam,
all the pressure dertvatives in Table 102 are positive, and in:
deady the one exception s <o s=mall that it could well tall within

the limits ot the experimental crvor of

the original Jdata.

Further-

mere, 1t o1s noted that all the dimensionless pressure derivatives
. . . . . . 1l
ot Young's modulus are of the order of magnitude of 1o, iLce., \ll‘
iy
~ 1o theretore, with reference to ¢ do1bar,
! 1op
{ S P
; [ dp ' Y
N o
!
] by
.- - - Jy . . t
! Since .w}\,] Ao~ 10 P rsee Table 4.0y, we conclude that | 1+
: I i
R - . N O -
! 210 dp it p oS measured in Pa, or, - + (Lot ap
Nl Nl Fa O
i tfop is measured in bl Cinet o Thus, o pressure of 100,000 Th i
| {
. 1s required to cause a Lo increase in the Young's modulus of
b any of the metals listed in Fable J01. N similar result Qs seen
to apply to any of the other propertics listed in this table.
' thus, in most engineering applications it should be possible to
frnore the oftects on the clastic constants of an init.al hvdro-
static pressure less than 107 1bh in In tact, since any initial

hydrostatic pressure causes o stable equi

the oftects of

Fhe s<tability of

CaNses.

mal o stability eritervion.  Similariy,

(2.0 vields:

the initial cont

substitution ot

librium contiguration,

the pressure may be completely ignored in such

tguration tollows trom

205, 20ty and oo For example, substitution of il o
nmto (20150 vields:
nY . : P
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Thus, the initial contivaration satistics the Haduamard intinitesi-

. nto
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Thus, the initial contiguration also satisties the Liapounov

stability criterion.

S. THE INTTIALLY STRESSED BEAM

In this scection we consider the incremental motion of an initially
stressed beam. We shall assume that the cross-section ot the beam
has at feast one plane of symmetry, which we shall take as the

A-2 o plane of our Cartesian axis syvstoem, where X is the longitudinal
axis ot the beam. It is assumed that the beam is subjected to an
initial axial stress o=c(a), with all other pre-stress tensor

component s vanishing, i.co.,

O O O
il N 1 0

O O O

! Tk = [EE LY (5.1
%] O ]

N T o 1 000

The incremental displacements are taken to be
Up = ToiX,t), us o0, ur o= owix, (5.0
and in view of (5.1), (5.20, and (3.1b), we obtain
S
R : 5.3

R T R K LR S R VR B 1.

lUpon substitution of (5.21 into (2.22b1, using (3,001 and (5037,

we readily obtain the tirst variation ot the strain encrev in the
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dAgdx. With these definitions, equation (5.0 ! 5
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Upon integration by parts, we obtain
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The time integral of the first variation ot the tincre-

mental) Kinetic cnergy is (sco 2,270,
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M7(Lo) =, Iz JA

i ‘L N
ol
= 1,2
Y‘lLiY = W‘JA‘
\ . Y
V1
; UEowe now invohe Hanilton's principle ror incromental

motions 205371, we readily obtain the stress ecquations ot incre-

mental motion and the associated, admissible boundary conditions
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S L =0 15,940
[V AR
tor Ly x - L
W\
_.'L)..\ W+ T o= 0 15,90
1
[ e AT A SR G | = 0 (5,900
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bauations 15,9, characterize the initially stressced |imoshenho

beam model [T]. To obtain the initially stressed tuler-Rernoulli

W .
beam model, we set o 1 0 = o= 0, and et . = - - . In this
0o X
case cquuations 5.9 reduce to
M
N o= SoT0
) IX
for ]w A
o« -
- A wo+ ;3 T L D=0 (5. 10b)
0o IR 0 B
X
- I,
. 3] . . -
[=(M* =M1 (= + (V- ey = () (5.1000
X l.;

If the beam is unable to sustuain a bending moment we have M o,

MY 0, and equations (5.10) reduce to

wo+ Ao e p o= 0 tfor Ly-x- L (5.1l
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where Vo= A“ K Lquations 5,111 caaracterize the well bnown,
classical model of the vibrating string.
Woe now derive the stress-displacenent relations ¢orres -

ponding to the bean model charact ciced by 50900 As g point of ]

departure, we postulate o hvperclastic mediun with o constant,

antantal, imitial stres< Dield coin the xo direction. oSee L1,
. . 9] Y )
[n this case we bive yom e aoy = e e, xUen- I,
%l - N NS " i w0
and aceording to 201 e 0 =] ) cl- Lo i the following
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development we shall ssume that the strains are snalloin the sensc

that ol and we shatl drop all terns which are of order - and
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hivhor. hus, wsing 12090 0 the strain tensor comnponents in the

tmitial contiuration are
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lhe elastic constuants \}.k are obtained with the aid of 1.6
ik
and (4.8, it it is assumed that the medium is isotropic in its
natural state. Upon lincarization with respect to -, they are
civen by
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It can al-o be shown, to the rirst order in . thuat

We pow relate the pre-stress tensor to the mmitial strain
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\ Inverting (5.130), we obtain
4 I~ N . N o 7 r 7
] m ”1
N ) o o .
vl O & Q) 11
| BN 1
0 Al
i 1 1,
RN EE I 5T
L .
ki ts I
Q O
1A%} n 1
¢ - _’O - _‘(‘ AVO
3 ) (B b-

whoere

f B = By, 0400 - 9By a-0) (5. 1300
) -
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The constants (5.14) can be expressed in terms of the material
constants of the unstrained, isotropic solid. With the aid of

(5.12), and after lincarization with respect to St it can be shown

that
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ete. It we use the material constants which characterize the
clastic behavior of carbon steel as shown in Table d.1, then

)] .
t?=h (1-5.23 ) and Q= (1-3.07- v We thus conclude that tor
d &) a [§]

initial stresses near the vield point, the material constants rq

and v, retferred to the natural state will change by less than 17
These small changes are usually neglected in engineering calceula-
tions.
In order to obtain the stress-displacement relations
tfor an initially stressed Timoshenho beam, we write
QO
Y11 = ]:.‘1)011 + "(1‘ l;l (1. *+ia)

%]

and upon substitution into (5.5) and ultifization of (2,151, we

obtain

0
M= BV
O

[t is customary to neglect the integral in this expression, so
that, approximately,
0 I i
M= I T—L 5. 100
M= E] (5. 000 ‘
Upon substitution of (5.13d) into (5.5), and utilization of (2,131,
we readily obtain

] -
VEQoeAe 3‘\ (5. 10h
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The beam incremental Ustress-displacement'” relations are piven by
(3. 100, We note that the coetfficients in (5,100 arce eapressed in
terms of the material constants of the unstrained mediom with the
aid ot 1A 1500, and (Ao 2er. Morcover, when ‘U:U, cquat tons 5L 1o)
reduce to the corresponding "stress-displacoment™ relations applic
able to o Limoshenko beam without pre-stress (7] 1t i< customary
to multiply the constuant l*(x‘, pooin (a0 loc) by g numerical factor
Chear coetficient ), and various methods for its determination

are discussed in [T Accordingly, in the tollowing we shall

Write (S.oloct in the form
O NG e ) (5. 1edl

where we et G By v

We shall now ohtain a resolution of the tforced motion problem of
initialiyv stressed Timoshenko beams in the sense of Sect ton A,
With reference to (5097 and (5,100, a well posed problem cun be
stated as follows:  We scekh a solution wix.t): ,(x,t] ot the

cyuat ons

N\
M R
\ QG+ m= gl -
) ate
e ‘\.‘
ax 3 RS |
RH 3
. oy - W
M o= El Ve Vo= e 0 X
o My
0 = & Gy + )
) 4 (v I J
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4
0N tor teo. bor convenience, we have omitted some ot the 4

subseripts previousty enploved, i.e., | by and A6 e T
) ) o

(RS

adiissible, non-homoeencous boundary conditions associated with

tas T are given by

ir owio, bt -t wolo,te, then W otar = 0

> 1
e Vo, thttt =\ ot then \il\“ 4l i
it o st - oty - oty then ’i'”‘ 0
it Mot o=t (1t Moot then ‘\‘i“‘} -0 oSy

’ 4
PF Wi th o= et = ow (,th, then W. (.1 = 0 1

B 1 E
Vet ity = \\,(-.tl. thvn\.ll.l =0 1
it e th o= et o ety then YL o= 0

S 1

it MLty = et - M\_(\,t), then Mt -0

i
3
A surficient condition for the uniqueness of the solution 1
ot the present problem is obtarmned by the initial conditions
WiX,0) = w (X)), W(X,0) = w [(\)
(8] O
[ BN
A N N B N N N B
0 (8]
the solutijon of the problem characterized by cquations (5,170,
- . . . . - 4
(5080, and (6.19) s now written in the torm
E
WIX,t) o w (NGt o+ N WoN) s gt [5.20a)
s . t i
=1 3
]
KIS0 O B PN & R R S I O B R T O 15,000
s S i
{
g
]
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The

M,

Q
The boundary
The eigenfunce
differential

to Nt

conditions
tions and

cquat ions

e MY
i 1 I
TOWL o+ V!
1 !
= kis!

I
= A\ "(‘;("

we normalize
(0]

where ©. .
1]

(r

5.22

Vo

of

according to {(5.18) and they are orthogonal.

then, then

SOCARLW .+ ot
1)

Upon substitution of |

we obtain

\
= ()
SW\A 4
\s N Qs ! X

SW

+ - ) /
X

associated with (5.21) are listed

cigenvalues satisfy the homogencous, ordinary

{a prime denotes the derivative with

is the Kronecker delta.

in

1

1

i

i
(5.21) k

4

-
(5.18}).

respect

- Q. =0 1
i N ;
=0
1 (5,22
Vo= 0+ cAN!
i i i
Y
+ hi) J
The cigenfunctions satisty homogencous boundary conditions
It, in addition,
Toldx o= L (5,259
] 1]
5.20) into (5.17) and utilization




4
4 . : e L !
. 3
. L
v, v
N T TV A S (N (5.2 0
1 1 =
1=1
SO P ST P IS (5. 24
(4 R FRERR = 32D
It we set t=0 in (5.20), and substitute the result into (50191, we
-
obtain
YOWOIXT 0 gL lo) = w in) 5w N0 (5,250 j
! } [§) =
1=1
: D N I R N R RN (5.25h
1 1 8] ~
i=1
i O N Nt T R B N B U US| 15,2500
. 1 1 8] N
i=1
R R A N A T T [P
1 1 O ~
1=1
: We now multiply (5.2%) and (5.21h1 by h‘ and ?i. respectively,
! and add.  Similarly, we mubtiply (5.2500 and (5.25¢1 by | \“i' and

{5.25b) and (5.25d) by vl{i. tpon application of (5.231, we obtain

.o+ g, o= P SO0
4 4 ln(” | L
g. ol - Pofo) o= ST AW WL o+ T dx (5..00h)
i 1 1 AR

o
qo ol - o) o= (;_\\.\ W, o+ ‘t,. cLonda 5,200
i i 0o o

0

P where
oty e - 0 AW WL+ ol L bdy
i s s
0

By methods which are analogous to Scetion 3, it can be shown that

Pty = (w Vo= WV ) 0N - My

1t s 1 s s | Y

b

- S ram o+ W prdx
o i i
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T

™~

Ml itk Y > Y
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R Ea




tollowing.

When

When Vo=

When oo

where o

by

vk 0
[ R
Mo . sinh °
WoINLtl = (Sl T AN y
s v . <inh
A
A codh
poonatl =Y —
M il ©o~inh
= N
M
) _ o N X
“.\'('\'U o (.. - 4‘)
AS I
o 1 x . [
T - S
s I: 1 2 «
. %
- - ,‘]\.y,
R e
AL <in
[&] ]
WoiN,th o7 .-
= i =i !
[
N cos N
) [ N
X, = - S +
b 1l sin g
I . VoG
= T and b= T
A i

In view of (5.29) and (5.22), the cigentunctions and

. R . BN
l\.l(,\) = \l*i\-ln . cLo= (,.lcn.\' .

RN

L0

associated cigenvaloes which satisty (5.5 and (5,220 are piven

Sl

O N




e T R—— U — —rre
s
[ .
\
whoere
L 2 (ivh
'l\"l A (ho+o]
i
RPN
':—l ‘]\'-‘ ll
‘ . N - -
RN A (horo ]
i
AR Y IR RN RS SR
A ‘l R ST SRR PR S U TN
Ro= JRC+2h Ced bk oy v e (l-c-k )
P ’
. (RUE A o - .
11 we set ];i | 0, r=1.2, in (5.31¢), we obtain
L Lrit R
i
l( ol ) +kh- l
and this is a rdimensionless) formula for the ith static buckiimy
toad.  When [ viv1 -k, we have = i L which i the welld

known tuler

this point

analysis of the forced motion problom i

Y.

we shall now procecd to

mot ton solut ton.

.i)i(l)

it s appropriate to pointoout that the

With the aid ot 5.0

W

"

buchling load tor o satfficiently “lender column. M

subsequent

restricted to the case

anthes1 o the complete tareed

s

and (820 we obtaan

N R L A S IM HHet
1 = 1 3]
o tthe v
(IS




oL, - bortr=0 for o

t
i+l . i
Porty o7 oi-1 .M tor ton
1 [e 1
WUso, in view of (3,200, 5. 2000 and the civen reron initial
condition, we have p
Qo it Py = 1
i i
g o - Py =0
1 i

<o that, with reference to (5.281, we have

y

t
qatto= Poity - o0 T P gTsin e Tdd
i i i i i
O 1
! P+l I ]
= - - CMocos ot LR A2 ]
. . i
1
tpon substitution off (5,52 and (5.30ad inte (5,00 we abt:in

the complete torced motion solution

Loy ] ‘ i+l
(%) 8} . i) ro(-~1 B . ) P
WoE W + - K l\l ll TN <in cos i |
I i=1 r=1 ] |
‘ (h. AN
v M i+
(s) 0 (ri - l i 1
R + l - & {( z C COoN CON ]

. t [t r) A .
where 1 = _ o the constants H.( and (i“ are detined hy

i
(5.31b), and (w_ .. ) are civen by (53.500.
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